]> git.pld-linux.org Git - packages/gdb.git/blame - gdb-vla-intel-fortran-strides.patch
- fix build on x32
[packages/gdb.git] / gdb-vla-intel-fortran-strides.patch
CommitLineData
140f8057
JR
1git diff --stat -p gdb/master...gdb/users/bheckel/fortran-strides
2dbfd7140bf4c0500d1f5d192be781f83f78f7922
3
4 gdb/dwarf2loc.c | 46 ++-
5 gdb/dwarf2loc.h | 6 +
6 gdb/dwarf2read.c | 13 +-
7 gdb/eval.c | 391 +++++++++++++++++++++-----
8 gdb/expprint.c | 20 +-
9 gdb/expression.h | 18 +-
10 gdb/f-exp.y | 42 ++-
11 gdb/f-valprint.c | 8 +-
12 gdb/gdbtypes.c | 34 ++-
13 gdb/gdbtypes.h | 18 +-
14 gdb/parse.c | 24 +-
15 gdb/rust-exp.y | 12 +-
16 gdb/rust-lang.c | 17 +-
17 gdb/testsuite/gdb.fortran/static-arrays.exp | 421 ++++++++++++++++++++++++++++
18 gdb/testsuite/gdb.fortran/static-arrays.f90 | 55 ++++
19 gdb/testsuite/gdb.fortran/vla-ptype.exp | 4 +
20 gdb/testsuite/gdb.fortran/vla-sizeof.exp | 4 +
21 gdb/testsuite/gdb.fortran/vla-stride.exp | 44 +++
22 gdb/testsuite/gdb.fortran/vla-stride.f90 | 29 ++
23 gdb/testsuite/gdb.fortran/vla.f90 | 10 +
24 gdb/valarith.c | 10 +-
25 gdb/valops.c | 197 +++++++++++--
26 gdb/value.h | 2 +
27 23 files changed, 1242 insertions(+), 183 deletions(-)
28
29Index: gdb-7.99.90.20170420/gdb/dwarf2loc.c
30===================================================================
31--- gdb-7.99.90.20170420.orig/gdb/dwarf2loc.c 2017-04-20 22:25:43.973254685 +0200
32+++ gdb-7.99.90.20170420/gdb/dwarf2loc.c 2017-04-20 22:26:14.356446562 +0200
33@@ -2622,11 +2622,14 @@
34 /* See dwarf2loc.h. */
35
36 int
37-dwarf2_evaluate_property (const struct dynamic_prop *prop,
38+dwarf2_evaluate_property_signed (const struct dynamic_prop *prop,
39 struct frame_info *frame,
40 struct property_addr_info *addr_stack,
41- CORE_ADDR *value)
42+ CORE_ADDR *value,
43+ int is_signed)
44 {
45+ int rc = 0;
46+
47 if (prop == NULL)
48 return 0;
49
50@@ -2650,7 +2653,7 @@
51
52 *value = value_as_address (val);
53 }
54- return 1;
55+ rc = 1;
56 }
57 }
58 break;
59@@ -2672,7 +2675,7 @@
60 if (!value_optimized_out (val))
61 {
62 *value = value_as_address (val);
63- return 1;
64+ rc = 1;
65 }
66 }
67 }
68@@ -2680,8 +2683,8 @@
69
70 case PROP_CONST:
71 *value = prop->data.const_val;
72- return 1;
73-
74+ rc = 1;
75+ break;
76 case PROP_ADDR_OFFSET:
77 {
78 struct dwarf2_property_baton *baton
79@@ -2702,11 +2705,38 @@
80 val = value_at (baton->offset_info.type,
81 pinfo->addr + baton->offset_info.offset);
82 *value = value_as_address (val);
83- return 1;
84+ rc = 1;
85 }
86+ break;
87+ }
88+
89+ if (rc == 1 && is_signed == 1)
90+ {
91+ /* If we have a valid return candidate and it's value is signed,
92+ we have to sign-extend the value because CORE_ADDR on 64bit machine has
93+ 8 bytes but address size of an 32bit application is 4 bytes. */
94+ struct gdbarch * gdbarch = target_gdbarch ();
95+ const int addr_bit = gdbarch_addr_bit (gdbarch);
96+ const CORE_ADDR neg_mask = ((~0) << (addr_bit - 1));
97+
98+ /* Check if signed bit is set and sign-extend values. */
99+ if (*value & (neg_mask))
100+ *value |= (neg_mask );
101 }
102+ return rc;
103+}
104
105- return 0;
106+int
107+dwarf2_evaluate_property (const struct dynamic_prop *prop,
108+ struct frame_info *frame,
109+ struct property_addr_info *addr_stack,
110+ CORE_ADDR *value)
111+{
112+ return dwarf2_evaluate_property_signed (prop,
113+ frame,
114+ addr_stack,
115+ value,
116+ 0);
117 }
118
119 /* See dwarf2loc.h. */
120Index: gdb-7.99.90.20170420/gdb/dwarf2loc.h
121===================================================================
122--- gdb-7.99.90.20170420.orig/gdb/dwarf2loc.h 2017-04-20 22:25:43.973254685 +0200
123+++ gdb-7.99.90.20170420/gdb/dwarf2loc.h 2017-04-20 22:26:14.356446562 +0200
124@@ -143,6 +143,12 @@
125 struct property_addr_info *addr_stack,
126 CORE_ADDR *value);
127
128+int dwarf2_evaluate_property_signed (const struct dynamic_prop *prop,
129+ struct frame_info *frame,
130+ struct property_addr_info *addr_stack,
131+ CORE_ADDR *value,
132+ int is_signed);
133+
134 /* A helper for the compiler interface that compiles a single dynamic
135 property to C code.
136
137Index: gdb-7.99.90.20170420/gdb/dwarf2read.c
138===================================================================
139--- gdb-7.99.90.20170420.orig/gdb/dwarf2read.c 2017-04-20 22:25:43.973254685 +0200
140+++ gdb-7.99.90.20170420/gdb/dwarf2read.c 2017-04-20 22:27:08.510788562 +0200
141@@ -15268,7 +15268,7 @@
142 struct type *base_type, *orig_base_type;
143 struct type *range_type;
144 struct attribute *attr;
145- struct dynamic_prop low, high;
146+ struct dynamic_prop low, high, stride;
147 int low_default_is_valid;
148 int high_bound_is_count = 0;
149 const char *name;
150@@ -15288,7 +15288,9 @@
151
152 low.kind = PROP_CONST;
153 high.kind = PROP_CONST;
154+ stride.kind = PROP_CONST;
155 high.data.const_val = 0;
156+ stride.data.const_val = 0;
157
158 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
159 omitting DW_AT_lower_bound. */
160@@ -15321,6 +15323,13 @@
161 break;
162 }
163
164+ attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
165+ if (attr)
166+ if (!attr_to_dynamic_prop (attr, die, cu, &stride))
167+ complaint (&symfile_complaints, _("Missing DW_AT_byte_stride "
168+ "- DIE at 0x%x [in module %s]"),
169+ to_underlying (die->sect_off), objfile_name (cu->objfile));
170+
171 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
172 if (attr)
173 attr_to_dynamic_prop (attr, die, cu, &low);
174@@ -15397,7 +15406,7 @@
175 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
176 high.data.const_val |= negative_mask;
177
178- range_type = create_range_type (NULL, orig_base_type, &low, &high);
179+ range_type = create_range_type (NULL, orig_base_type, &low, &high, &stride);
180
181 if (high_bound_is_count)
182 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
183Index: gdb-7.99.90.20170420/gdb/eval.c
184===================================================================
185--- gdb-7.99.90.20170420.orig/gdb/eval.c 2017-04-20 22:25:43.973254685 +0200
186+++ gdb-7.99.90.20170420/gdb/eval.c 2017-04-20 22:26:14.362446600 +0200
187@@ -379,29 +379,325 @@
188 return index;
189 }
190
191+/* Evaluates any operation on Fortran arrays or strings with at least
192+ one user provided parameter. Expects the input ARRAY to be either
193+ an array, or a string. Evaluates EXP by incrementing POS, and
194+ writes the content from the elt stack into a local struct. NARGS
195+ specifies number of literal or range arguments the user provided.
196+ NARGS must be the same number as ARRAY has dimensions. */
197+
198 static struct value *
199-value_f90_subarray (struct value *array,
200- struct expression *exp, int *pos, enum noside noside)
201+value_f90_subarray (struct value *array, struct expression *exp,
202+ int *pos, int nargs, enum noside noside)
203 {
204- int pc = (*pos) + 1;
205+ int i, dim_count = 0;
206 LONGEST low_bound, high_bound;
207- struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
208- enum range_type range_type
209- = (enum range_type) longest_to_int (exp->elts[pc].longconst);
210-
211- *pos += 3;
212+ struct value *new_array = array;
213+ struct type *array_type = check_typedef (value_type (new_array));
214+ struct type *elt_type;
215+
216+ typedef struct subscript_range
217+ {
218+ enum range_type f90_range_type;
219+ LONGEST low, high, stride;
220+ } subscript_range;
221+
222+ typedef enum subscript_kind
223+ {
224+ SUBSCRIPT_RANGE, /* e.g. "(lowbound:highbound)" */
225+ SUBSCRIPT_INDEX /* e.g. "(literal)" */
226+ } kind;
227+
228+ /* Local struct to hold user data for Fortran subarray dimensions. */
229+ struct subscript_store
230+ {
231+ /* For every dimension, we are either working on a range or an index
232+ expression, so we store this info separately for later. */
233+ enum subscript_kind kind;
234+
235+ /* We also store either the lower and upper bound info, or the index
236+ number. Before evaluation of the input values, we do not know if we are
237+ actually working on a range of ranges, or an index in a range. So as a
238+ first step we store all input in a union. The array calculation itself
239+ deals with this later on. */
240+ union element_range
241+ {
242+ subscript_range range;
243+ LONGEST number;
244+ } U;
245+ } *subscript_array;
246+
247+ /* Check if the number of arguments provided by the user matches
248+ the number of dimension of the array. A string has only one
249+ dimension. */
250+ if (nargs != calc_f77_array_dims (value_type (new_array)))
251+ error (_("Wrong number of subscripts"));
252+
253+ subscript_array = (struct subscript_store*) alloca (sizeof (*subscript_array) * nargs);
254+
255+ /* Parse the user input into the SUBSCRIPT_ARRAY to store it. We need
256+ to evaluate it first, as the input is from left-to-right. The
257+ array is stored from right-to-left. So we have to use the user
258+ input in reverse order. Later on, we need the input information to
259+ re-calculate the output array. For multi-dimensional arrays, we
260+ can be dealing with any possible combination of ranges and indices
261+ for every dimension. */
262+ for (i = 0; i < nargs; i++)
263+ {
264+ struct subscript_store *index = &subscript_array[i];
265
266- if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
267- low_bound = TYPE_LOW_BOUND (range);
268- else
269- low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
270+ /* The user input is a range, with or without lower and upper bound.
271+ E.g.: "p arry(2:5)", "p arry( :5)", "p arry( : )", etc. */
272+ if (exp->elts[*pos].opcode == OP_RANGE)
273+ {
274+ int pc = (*pos) + 1;
275+ subscript_range *range;
276
277- if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
278- high_bound = TYPE_HIGH_BOUND (range);
279- else
280- high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
281+ index->kind = SUBSCRIPT_RANGE;
282+ range = &index->U.range;
283+
284+ *pos += 3;
285+ range->f90_range_type = (enum range_type) exp->elts[pc].longconst;
286+
287+ /* If a lower bound was provided by the user, the bit has been
288+ set and we can assign the value from the elt stack. Same for
289+ upper bound. */
290+ if ((range->f90_range_type & SUBARRAY_LOW_BOUND)
291+ == SUBARRAY_LOW_BOUND)
292+ range->low = value_as_long (evaluate_subexp (NULL_TYPE, exp,
293+ pos, noside));
294+ if ((range->f90_range_type & SUBARRAY_HIGH_BOUND)
295+ == SUBARRAY_HIGH_BOUND)
296+ range->high = value_as_long (evaluate_subexp (NULL_TYPE, exp,
297+ pos, noside));
298+
299+ /* Assign the user's stride value if provided. */
300+ if ((range->f90_range_type & SUBARRAY_STRIDE) == SUBARRAY_STRIDE)
301+ range->stride = value_as_long (evaluate_subexp (NULL_TYPE, exp,
302+ pos, noside));
303+
304+ /* Assign the default stride value '1'. */
305+ else
306+ range->stride = 1;
307+
308+ /* Check the provided stride value is illegal, aka '0'. */
309+ if (range->stride == 0)
310+ error (_("Stride must not be 0"));
311+ }
312+ /* User input is an index. E.g.: "p arry(5)". */
313+ else
314+ {
315+ struct value *val;
316+
317+ index->kind = SUBSCRIPT_INDEX;
318+
319+ /* Evaluate each subscript; it must be a legal integer in F77. This
320+ ensures the validity of the provided index. */
321+ val = evaluate_subexp_with_coercion (exp, pos, noside);
322+ index->U.number = value_as_long (val);
323+ }
324+
325+ }
326+
327+ /* Traverse the array from right to left and set the high and low bounds
328+ for later use. */
329+ for (i = nargs - 1; i >= 0; i--)
330+ {
331+ struct subscript_store *index = &subscript_array[i];
332+ struct type *index_type = TYPE_INDEX_TYPE (array_type);
333+
334+ switch (index->kind)
335+ {
336+ case SUBSCRIPT_RANGE:
337+ {
338+
339+ /* When we hit the first range specified by the user, we must
340+ treat any subsequent user entry as a range. We simply
341+ increment DIM_COUNT which tells us how many times we are
342+ calling VALUE_SLICE_1. */
343+ subscript_range *range = &index->U.range;
344+
345+ /* If no lower bound was provided by the user, we take the
346+ default boundary. Same for the high bound. */
347+ if ((range->f90_range_type & SUBARRAY_LOW_BOUND) == 0)
348+ range->low = TYPE_LOW_BOUND (index_type);
349+
350+ if ((range->f90_range_type & SUBARRAY_HIGH_BOUND) == 0)
351+ range->high = TYPE_HIGH_BOUND (index_type);
352+
353+ /* Both user provided low and high bound have to be inside the
354+ array bounds. Throw an error if not. */
355+ if (range->low < TYPE_LOW_BOUND (index_type)
356+ || range->low > TYPE_HIGH_BOUND (index_type)
357+ || range->high < TYPE_LOW_BOUND (index_type)
358+ || range->high > TYPE_HIGH_BOUND (index_type))
359+ error (_("provided bound(s) outside array bound(s)"));
360+
361+ /* For a negative stride the lower boundary must be larger than the
362+ upper boundary.
363+ For a positive stride the lower boundary must be smaller than the
364+ upper boundary. */
365+ if ((range->stride < 0 && range->low < range->high)
366+ || (range->stride > 0 && range->low > range->high))
367+ error (_("Wrong value provided for stride and boundaries"));
368+
369+ }
370+ break;
371+
372+ case SUBSCRIPT_INDEX:
373+ break;
374
375- return value_slice (array, low_bound, high_bound - low_bound + 1);
376+ }
377+
378+ array_type = TYPE_TARGET_TYPE (array_type);
379+ }
380+
381+ /* Reset ARRAY_TYPE before slicing.*/
382+ array_type = check_typedef (value_type (new_array));
383+
384+ /* Traverse the array from right to left and evaluate each corresponding
385+ user input. VALUE_SUBSCRIPT is called for every index, until a range
386+ expression is evaluated. After a range expression has been evaluated,
387+ every subsequent expression is also treated as a range. */
388+ for (i = nargs - 1; i >= 0; i--)
389+ {
390+ struct subscript_store *index = &subscript_array[i];
391+ struct type *index_type = TYPE_INDEX_TYPE (array_type);
392+
393+ switch (index->kind)
394+ {
395+ case SUBSCRIPT_RANGE:
396+ {
397+
398+ /* When we hit the first range specified by the user, we must
399+ treat any subsequent user entry as a range. We simply
400+ increment DIM_COUNT which tells us how many times we are
401+ calling VALUE_SLICE_1. */
402+ subscript_range *range = &index->U.range;
403+
404+ /* DIM_COUNT counts every user argument that is treated as a range.
405+ This is necessary for expressions like 'print array(7, 8:9).
406+ Here the first argument is a literal, but must be treated as a
407+ range argument to allow the correct output representation. */
408+ dim_count++;
409+
410+ new_array
411+ = value_slice_1 (new_array, range->low,
412+ range->high - range->low + 1,
413+ range->stride, dim_count);
414+ }
415+ break;
416+
417+ case SUBSCRIPT_INDEX:
418+ {
419+ /* DIM_COUNT only stays '0' when no range argument was processed
420+ before, starting from the last dimension. This way we can
421+ reduce the number of dimensions from the result array.
422+ However, if a range has been processed before an index, we
423+ treat the index like a range with equal low- and high bounds
424+ to get the value offset right. */
425+ if (dim_count == 0)
426+ new_array
427+ = value_subscripted_rvalue (new_array, index->U.number,
428+ f77_get_lowerbound (value_type
429+ (new_array)));
430+ else
431+ {
432+ dim_count++;
433+
434+ /* We might end up here, because we have to treat the provided
435+ index like a range. But now VALUE_SUBSCRIPTED_RVALUE
436+ cannot do the range checks for us. So we have to make sure
437+ ourselves that the user provided index is inside the
438+ array bounds. Throw an error if not. */
439+ if (index->U.number < TYPE_LOW_BOUND (index_type)
440+ && index->U.number > TYPE_HIGH_BOUND (index_type))
441+ error (_("provided bound(s) outside array bound(s)"));
442+
443+ if (index->U.number > TYPE_LOW_BOUND (index_type)
444+ && index->U.number > TYPE_HIGH_BOUND (index_type))
445+ error (_("provided bound(s) outside array bound(s)"));
446+
447+ new_array = value_slice_1 (new_array,
448+ index->U.number,
449+ 1, /* COUNT is '1' element */
450+ 1, /* STRIDE set to '1' */
451+ dim_count);
452+ }
453+
454+ }
455+ break;
456+ }
457+ array_type = TYPE_TARGET_TYPE (array_type);
458+ }
459+
460+ /* With DIM_COUNT > 1 we currently have a one dimensional array, but expect
461+ an array of arrays, depending on how many ranges have been provided by
462+ the user. So we need to rebuild the array dimensions for printing it
463+ correctly.
464+ Starting from right to left in the user input, after we hit the first
465+ range argument every subsequent argument is also treated as a range.
466+ E.g.:
467+ "p ary(3, 7, 2:15)" in Fortran has only 1 dimension, but we calculated 3
468+ ranges.
469+ "p ary(3, 7:12, 4)" in Fortran has only 1 dimension, but we calculated 2
470+ ranges.
471+ "p ary(2:4, 5, 7)" in Fortran has only 1 dimension, and we calculated 1
472+ range. */
473+ if (dim_count > 1)
474+ {
475+ struct value *v = NULL;
476+
477+ elt_type = TYPE_TARGET_TYPE (value_type (new_array));
478+
479+ /* Every SUBSCRIPT_RANGE in the user input signifies an actual range in
480+ the output array. So we traverse the SUBSCRIPT_ARRAY again, looking
481+ for a range entry. When we find one, we use the range info to create
482+ an additional range_type to set the correct bounds and dimensions for
483+ the output array. In addition, we may have a stride value that is not
484+ '1', forcing us to adjust the number of elements in a range, according
485+ to the stride value. */
486+ for (i = 0; i < nargs; i++)
487+ {
488+ struct subscript_store *index = &subscript_array[i];
489+
490+ if (index->kind == SUBSCRIPT_RANGE)
491+ {
492+ struct type *range_type, *interim_array_type;
493+
494+ int new_length;
495+
496+ /* The length of a sub-dimension with all elements between the
497+ bounds plus the start element itself. It may be modified by
498+ a user provided stride value. */
499+ new_length = index->U.range.high - index->U.range.low;
500+
501+ new_length /= index->U.range.stride;
502+
503+ range_type
504+ = create_static_range_type (NULL,
505+ elt_type,
506+ index->U.range.low,
507+ index->U.range.low + new_length);
508+
509+ interim_array_type = create_array_type (NULL,
510+ elt_type,
511+ range_type);
512+
513+ TYPE_CODE (interim_array_type)
514+ = TYPE_CODE (value_type (new_array));
515+
516+ v = allocate_value (interim_array_type);
517+
518+ elt_type = value_type (v);
519+ }
520+
521+ }
522+ value_contents_copy (v, 0, new_array, 0, TYPE_LENGTH (elt_type));
523+ return v;
524+ }
525+
526+ return new_array;
527 }
528
529
530@@ -1790,19 +2086,8 @@
531 switch (code)
532 {
533 case TYPE_CODE_ARRAY:
534- if (exp->elts[*pos].opcode == OP_RANGE)
535- return value_f90_subarray (arg1, exp, pos, noside);
536- else
537- goto multi_f77_subscript;
538-
539 case TYPE_CODE_STRING:
540- if (exp->elts[*pos].opcode == OP_RANGE)
541- return value_f90_subarray (arg1, exp, pos, noside);
542- else
543- {
544- arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
545- return value_subscript (arg1, value_as_long (arg2));
546- }
547+ return value_f90_subarray (arg1, exp, pos, nargs, noside);
548
549 case TYPE_CODE_PTR:
550 case TYPE_CODE_FUNC:
551@@ -2203,49 +2488,6 @@
552 }
553 return (arg1);
554
555- multi_f77_subscript:
556- {
557- LONGEST subscript_array[MAX_FORTRAN_DIMS];
558- int ndimensions = 1, i;
559- struct value *array = arg1;
560-
561- if (nargs > MAX_FORTRAN_DIMS)
562- error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
563-
564- ndimensions = calc_f77_array_dims (type);
565-
566- if (nargs != ndimensions)
567- error (_("Wrong number of subscripts"));
568-
569- gdb_assert (nargs > 0);
570-
571- /* Now that we know we have a legal array subscript expression
572- let us actually find out where this element exists in the array. */
573-
574- /* Take array indices left to right. */
575- for (i = 0; i < nargs; i++)
576- {
577- /* Evaluate each subscript; it must be a legal integer in F77. */
578- arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
579-
580- /* Fill in the subscript array. */
581-
582- subscript_array[i] = value_as_long (arg2);
583- }
584-
585- /* Internal type of array is arranged right to left. */
586- for (i = nargs; i > 0; i--)
587- {
588- struct type *array_type = check_typedef (value_type (array));
589- LONGEST index = subscript_array[i - 1];
590-
591- array = value_subscripted_rvalue (array, index,
592- f77_get_lowerbound (array_type));
593- }
594-
595- return array;
596- }
597-
598 case BINOP_LOGICAL_AND:
599 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
600 if (noside == EVAL_SKIP)
601@@ -3102,6 +3344,9 @@
602 int ndimen = 1;
603 struct type *tmp_type;
604
605+ if (TYPE_CODE (array_type) == TYPE_CODE_STRING)
606+ return 1;
607+
608 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
609 error (_("Can't get dimensions for a non-array type"));
610
611Index: gdb-7.99.90.20170420/gdb/expprint.c
612===================================================================
613--- gdb-7.99.90.20170420.orig/gdb/expprint.c 2017-04-20 22:25:43.973254685 +0200
614+++ gdb-7.99.90.20170420/gdb/expprint.c 2017-04-20 22:26:14.363446607 +0200
615@@ -568,12 +568,10 @@
616 *pos += 2;
617
618 fputs_filtered ("RANGE(", stream);
619- if (range_type == HIGH_BOUND_DEFAULT
620- || range_type == NONE_BOUND_DEFAULT)
621+ if ((range_type & SUBARRAY_LOW_BOUND) == SUBARRAY_LOW_BOUND)
622 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
623 fputs_filtered ("..", stream);
624- if (range_type == LOW_BOUND_DEFAULT
625- || range_type == NONE_BOUND_DEFAULT)
626+ if ((range_type & SUBARRAY_HIGH_BOUND) == SUBARRAY_HIGH_BOUND)
627 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
628 fputs_filtered (")", stream);
629 return;
630@@ -1055,16 +1053,16 @@
631
632 switch (range_type)
633 {
634- case BOTH_BOUND_DEFAULT:
635+ case SUBARRAY_NONE_BOUND:
636 fputs_filtered ("Range '..'", stream);
637 break;
638- case LOW_BOUND_DEFAULT:
639+ case SUBARRAY_HIGH_BOUND:
640 fputs_filtered ("Range '..EXP'", stream);
641 break;
642- case HIGH_BOUND_DEFAULT:
643+ case SUBARRAY_LOW_BOUND:
644 fputs_filtered ("Range 'EXP..'", stream);
645 break;
646- case NONE_BOUND_DEFAULT:
647+ case (SUBARRAY_LOW_BOUND | SUBARRAY_HIGH_BOUND):
648 fputs_filtered ("Range 'EXP..EXP'", stream);
649 break;
650 default:
651@@ -1072,11 +1070,9 @@
652 break;
653 }
654
655- if (range_type == HIGH_BOUND_DEFAULT
656- || range_type == NONE_BOUND_DEFAULT)
657+ if ((range_type & SUBARRAY_LOW_BOUND) == SUBARRAY_LOW_BOUND)
658 elt = dump_subexp (exp, stream, elt);
659- if (range_type == LOW_BOUND_DEFAULT
660- || range_type == NONE_BOUND_DEFAULT)
661+ if ((range_type & SUBARRAY_HIGH_BOUND) == SUBARRAY_HIGH_BOUND)
662 elt = dump_subexp (exp, stream, elt);
663 }
664 break;
665Index: gdb-7.99.90.20170420/gdb/expression.h
666===================================================================
667--- gdb-7.99.90.20170420.orig/gdb/expression.h 2017-04-20 22:25:43.973254685 +0200
668+++ gdb-7.99.90.20170420/gdb/expression.h 2017-04-20 22:26:14.363446607 +0200
669@@ -154,17 +154,17 @@
670 struct ui_file *, const char *);
671 extern void dump_prefix_expression (struct expression *, struct ui_file *);
672
673-/* In an OP_RANGE expression, either bound could be empty, indicating
674- that its value is by default that of the corresponding bound of the
675- array or string. So we have four sorts of subrange. This
676- enumeration type is to identify this. */
677-
678+/* In an OP_RANGE expression, either bound can be provided by the user, or not.
679+ In addition to this, the user can also specify a stride value to indicated
680+ only certain elements of the array. This enumeration type is to identify
681+ this. */
682+
683 enum range_type
684 {
685- BOTH_BOUND_DEFAULT, /* "(:)" */
686- LOW_BOUND_DEFAULT, /* "(:high)" */
687- HIGH_BOUND_DEFAULT, /* "(low:)" */
688- NONE_BOUND_DEFAULT /* "(low:high)" */
689+ SUBARRAY_NONE_BOUND = 0x0, /* "( : )" */
690+ SUBARRAY_LOW_BOUND = 0x1, /* "(low:)" */
691+ SUBARRAY_HIGH_BOUND = 0x2, /* "(:high)" */
692+ SUBARRAY_STRIDE = 0x4 /* "(::stride)" */
693 };
694
695 #endif /* !defined (EXPRESSION_H) */
696Index: gdb-7.99.90.20170420/gdb/f-exp.y
697===================================================================
698--- gdb-7.99.90.20170420.orig/gdb/f-exp.y 2017-04-20 22:25:43.973254685 +0200
699+++ gdb-7.99.90.20170420/gdb/f-exp.y 2017-04-20 22:26:14.363446607 +0200
700@@ -254,31 +254,63 @@
701
702 arglist : arglist ',' exp %prec ABOVE_COMMA
703 { arglist_len++; }
704+ | arglist ',' subrange %prec ABOVE_COMMA
705+ { arglist_len++; }
706 ;
707
708 /* There are four sorts of subrange types in F90. */
709
710 subrange: exp ':' exp %prec ABOVE_COMMA
711- { write_exp_elt_opcode (pstate, OP_RANGE);
712- write_exp_elt_longcst (pstate, NONE_BOUND_DEFAULT);
713+ { write_exp_elt_opcode (pstate, OP_RANGE);
714+ write_exp_elt_longcst (pstate,
715+ SUBARRAY_LOW_BOUND | SUBARRAY_HIGH_BOUND);
716 write_exp_elt_opcode (pstate, OP_RANGE); }
717 ;
718
719 subrange: exp ':' %prec ABOVE_COMMA
720 { write_exp_elt_opcode (pstate, OP_RANGE);
721- write_exp_elt_longcst (pstate, HIGH_BOUND_DEFAULT);
722+ write_exp_elt_longcst (pstate, SUBARRAY_LOW_BOUND);
723 write_exp_elt_opcode (pstate, OP_RANGE); }
724 ;
725
726 subrange: ':' exp %prec ABOVE_COMMA
727 { write_exp_elt_opcode (pstate, OP_RANGE);
728- write_exp_elt_longcst (pstate, LOW_BOUND_DEFAULT);
729+ write_exp_elt_longcst (pstate, SUBARRAY_HIGH_BOUND);
730 write_exp_elt_opcode (pstate, OP_RANGE); }
731 ;
732
733 subrange: ':' %prec ABOVE_COMMA
734 { write_exp_elt_opcode (pstate, OP_RANGE);
735- write_exp_elt_longcst (pstate, BOTH_BOUND_DEFAULT);
736+ write_exp_elt_longcst (pstate, SUBARRAY_NONE_BOUND);
737+ write_exp_elt_opcode (pstate, OP_RANGE); }
738+ ;
739+
740+/* Each subrange type can have a stride argument. */
741+subrange: exp ':' exp ':' exp %prec ABOVE_COMMA
742+ { write_exp_elt_opcode (pstate, OP_RANGE);
743+ write_exp_elt_longcst (pstate, SUBARRAY_LOW_BOUND
744+ | SUBARRAY_HIGH_BOUND
745+ | SUBARRAY_STRIDE);
746+ write_exp_elt_opcode (pstate, OP_RANGE); }
747+ ;
748+
749+subrange: exp ':' ':' exp %prec ABOVE_COMMA
750+ { write_exp_elt_opcode (pstate, OP_RANGE);
751+ write_exp_elt_longcst (pstate, SUBARRAY_LOW_BOUND
752+ | SUBARRAY_STRIDE);
753+ write_exp_elt_opcode (pstate, OP_RANGE); }
754+ ;
755+
756+subrange: ':' exp ':' exp %prec ABOVE_COMMA
757+ { write_exp_elt_opcode (pstate, OP_RANGE);
758+ write_exp_elt_longcst (pstate, SUBARRAY_HIGH_BOUND
759+ | SUBARRAY_STRIDE);
760+ write_exp_elt_opcode (pstate, OP_RANGE); }
761+ ;
762+
763+subrange: ':' ':' exp %prec ABOVE_COMMA
764+ { write_exp_elt_opcode (pstate, OP_RANGE);
765+ write_exp_elt_longcst (pstate, SUBARRAY_STRIDE);
766 write_exp_elt_opcode (pstate, OP_RANGE); }
767 ;
768
769Index: gdb-7.99.90.20170420/gdb/f-valprint.c
770===================================================================
771--- gdb-7.99.90.20170420.orig/gdb/f-valprint.c 2017-04-20 22:25:43.973254685 +0200
772+++ gdb-7.99.90.20170420/gdb/f-valprint.c 2017-04-20 22:26:14.364446613 +0200
773@@ -121,8 +121,14 @@
774
775 if (nss != ndimensions)
776 {
777- size_t dim_size = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
778+ size_t dim_size;
779 size_t offs = 0;
780+ LONGEST byte_stride = abs (TYPE_BYTE_STRIDE (range_type));
781+
782+ if (byte_stride)
783+ dim_size = byte_stride;
784+ else
785+ dim_size = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
786
787 for (i = lowerbound;
788 (i < upperbound + 1 && (*elts) < options->print_max);
789Index: gdb-7.99.90.20170420/gdb/gdbtypes.c
790===================================================================
791--- gdb-7.99.90.20170420.orig/gdb/gdbtypes.c 2017-04-20 22:25:43.973254685 +0200
792+++ gdb-7.99.90.20170420/gdb/gdbtypes.c 2017-04-20 22:26:14.365446619 +0200
793@@ -862,7 +862,8 @@
794 struct type *
795 create_range_type (struct type *result_type, struct type *index_type,
796 const struct dynamic_prop *low_bound,
797- const struct dynamic_prop *high_bound)
798+ const struct dynamic_prop *high_bound,
799+ const struct dynamic_prop *stride)
800 {
801 if (result_type == NULL)
802 result_type = alloc_type_copy (index_type);
803@@ -877,6 +878,7 @@
804 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
805 TYPE_RANGE_DATA (result_type)->low = *low_bound;
806 TYPE_RANGE_DATA (result_type)->high = *high_bound;
807+ TYPE_RANGE_DATA (result_type)->stride = *stride;
808
809 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
810 TYPE_UNSIGNED (result_type) = 1;
811@@ -905,7 +907,7 @@
812 create_static_range_type (struct type *result_type, struct type *index_type,
813 LONGEST low_bound, LONGEST high_bound)
814 {
815- struct dynamic_prop low, high;
816+ struct dynamic_prop low, high, stride;
817
818 low.kind = PROP_CONST;
819 low.data.const_val = low_bound;
820@@ -913,7 +915,11 @@
821 high.kind = PROP_CONST;
822 high.data.const_val = high_bound;
823
824- result_type = create_range_type (result_type, index_type, &low, &high);
825+ stride.kind = PROP_CONST;
826+ stride.data.const_val = 0;
827+
828+ result_type = create_range_type (result_type, index_type,
829+ &low, &high, &stride);
830
831 return result_type;
832 }
833@@ -1110,16 +1116,20 @@
834 && (!type_not_associated (result_type)
835 && !type_not_allocated (result_type)))
836 {
837- LONGEST low_bound, high_bound;
838+ LONGEST low_bound, high_bound, byte_stride;
839
840 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
841 low_bound = high_bound = 0;
842 element_type = check_typedef (element_type);
843+ byte_stride = abs (TYPE_BYTE_STRIDE (range_type));
844+
845 /* Be careful when setting the array length. Ada arrays can be
846 empty arrays with the high_bound being smaller than the low_bound.
847 In such cases, the array length should be zero. */
848 if (high_bound < low_bound)
849 TYPE_LENGTH (result_type) = 0;
850+ else if (byte_stride > 0)
851+ TYPE_LENGTH (result_type) = byte_stride * (high_bound - low_bound + 1);
852 else if (bit_stride > 0)
853 TYPE_LENGTH (result_type) =
854 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
855@@ -1912,12 +1922,12 @@
856 CORE_ADDR value;
857 struct type *static_range_type, *static_target_type;
858 const struct dynamic_prop *prop;
859- struct dynamic_prop low_bound, high_bound;
860+ struct dynamic_prop low_bound, high_bound, stride;
861
862 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
863
864 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
865- if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
866+ if (dwarf2_evaluate_property_signed (prop, NULL, addr_stack, &value, 1))
867 {
868 low_bound.kind = PROP_CONST;
869 low_bound.data.const_val = value;
870@@ -1929,7 +1939,7 @@
871 }
872
873 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
874- if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
875+ if (dwarf2_evaluate_property_signed (prop, NULL, addr_stack, &value, 1))
876 {
877 high_bound.kind = PROP_CONST;
878 high_bound.data.const_val = value;
879@@ -1944,12 +1954,20 @@
880 high_bound.data.const_val = 0;
881 }
882
883+ prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
884+ if (dwarf2_evaluate_property_signed (prop, NULL, addr_stack, &value, 1))
885+ {
886+ stride.kind = PROP_CONST;
887+ stride.data.const_val = value;
888+ }
889+
890 static_target_type
891 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
892 addr_stack, 0);
893 static_range_type = create_range_type (copy_type (dyn_range_type),
894 static_target_type,
895- &low_bound, &high_bound);
896+ &low_bound, &high_bound, &stride);
897+
898 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
899 return static_range_type;
900 }
901Index: gdb-7.99.90.20170420/gdb/gdbtypes.h
902===================================================================
903--- gdb-7.99.90.20170420.orig/gdb/gdbtypes.h 2017-04-20 22:25:43.973254685 +0200
904+++ gdb-7.99.90.20170420/gdb/gdbtypes.h 2017-04-20 22:26:14.365446619 +0200
905@@ -551,6 +551,10 @@
906
907 struct dynamic_prop high;
908
909+ /* * Stride of range. */
910+
911+ struct dynamic_prop stride;
912+
913 /* True if HIGH range bound contains the number of elements in the
914 subrange. This affects how the final hight bound is computed. */
915
916@@ -713,7 +717,6 @@
917 /* * Union member used for range types. */
918
919 struct range_bounds *bounds;
920-
921 } flds_bnds;
922
923 /* * Slot to point to additional language-specific fields of this
924@@ -1228,6 +1231,15 @@
925 TYPE_RANGE_DATA(range_type)->high.kind
926 #define TYPE_LOW_BOUND_KIND(range_type) \
927 TYPE_RANGE_DATA(range_type)->low.kind
928+#define TYPE_BYTE_STRIDE(range_type) \
929+ TYPE_RANGE_DATA(range_type)->stride.data.const_val
930+#define TYPE_BYTE_STRIDE_BLOCK(range_type) \
931+ TYPE_RANGE_DATA(range_type)->stride.data.locexpr
932+#define TYPE_BYTE_STRIDE_LOCLIST(range_type) \
933+ TYPE_RANGE_DATA(range_type)->stride.data.loclist
934+#define TYPE_BYTE_STRIDE_KIND(range_type) \
935+ TYPE_RANGE_DATA(range_type)->stride.kind
936+
937
938 /* Property accessors for the type data location. */
939 #define TYPE_DATA_LOCATION(thistype) \
940@@ -1262,6 +1274,9 @@
941 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
942 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
943 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
944+#define TYPE_ARRAY_STRIDE_IS_UNDEFINED(arraytype) \
945+ (TYPE_BYTE_STRIDE(TYPE_INDEX_TYPE(arraytype)) == 0)
946+
947
948 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
949 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
950@@ -1776,6 +1791,7 @@
951
952 extern struct type *create_range_type (struct type *, struct type *,
953 const struct dynamic_prop *,
954+ const struct dynamic_prop *,
955 const struct dynamic_prop *);
956
957 extern struct type *create_array_type (struct type *, struct type *,
958Index: gdb-7.99.90.20170420/gdb/parse.c
959===================================================================
960--- gdb-7.99.90.20170420.orig/gdb/parse.c 2017-04-20 22:25:43.973254685 +0200
961+++ gdb-7.99.90.20170420/gdb/parse.c 2017-04-20 22:26:14.366446625 +0200
962@@ -1007,22 +1007,20 @@
963
964 case OP_RANGE:
965 oplen = 3;
966+ args = 0;
967 range_type = (enum range_type)
968 longest_to_int (expr->elts[endpos - 2].longconst);
969
970- switch (range_type)
971- {
972- case LOW_BOUND_DEFAULT:
973- case HIGH_BOUND_DEFAULT:
974- args = 1;
975- break;
976- case BOTH_BOUND_DEFAULT:
977- args = 0;
978- break;
979- case NONE_BOUND_DEFAULT:
980- args = 2;
981- break;
982- }
983+ /* Increment the argument counter for each argument
984+ provided by the user. */
985+ if ((range_type & SUBARRAY_LOW_BOUND) == SUBARRAY_LOW_BOUND)
986+ args++;
987+
988+ if ((range_type & SUBARRAY_HIGH_BOUND) == SUBARRAY_HIGH_BOUND)
989+ args++;
990+
991+ if ((range_type & SUBARRAY_STRIDE) == SUBARRAY_STRIDE)
992+ args++;
993
994 break;
995
996Index: gdb-7.99.90.20170420/gdb/rust-exp.y
997===================================================================
998--- gdb-7.99.90.20170420.orig/gdb/rust-exp.y 2017-04-20 22:25:43.973254685 +0200
999+++ gdb-7.99.90.20170420/gdb/rust-exp.y 2017-04-20 22:26:14.366446625 +0200
1000@@ -2409,23 +2409,17 @@
1001
1002 case OP_RANGE:
1003 {
1004- enum range_type kind = BOTH_BOUND_DEFAULT;
1005+ enum range_type kind = SUBARRAY_NONE_BOUND;
1006
1007 if (operation->left.op != NULL)
1008 {
1009 convert_ast_to_expression (state, operation->left.op, top);
1010- kind = HIGH_BOUND_DEFAULT;
1011+ kind = SUBARRAY_LOW_BOUND;
1012 }
1013 if (operation->right.op != NULL)
1014 {
1015 convert_ast_to_expression (state, operation->right.op, top);
1016- if (kind == BOTH_BOUND_DEFAULT)
1017- kind = LOW_BOUND_DEFAULT;
1018- else
1019- {
1020- gdb_assert (kind == HIGH_BOUND_DEFAULT);
1021- kind = NONE_BOUND_DEFAULT;
1022- }
1023+ kind = (range_type) (kind | SUBARRAY_HIGH_BOUND);
1024 }
1025 write_exp_elt_opcode (state, OP_RANGE);
1026 write_exp_elt_longcst (state, kind);
1027Index: gdb-7.99.90.20170420/gdb/rust-lang.c
1028===================================================================
1029--- gdb-7.99.90.20170420.orig/gdb/rust-lang.c 2017-04-20 22:25:43.973254685 +0200
1030+++ gdb-7.99.90.20170420/gdb/rust-lang.c 2017-04-20 22:26:14.367446632 +0200
1031@@ -1314,9 +1314,9 @@
1032 kind = (enum range_type) longest_to_int (exp->elts[*pos + 1].longconst);
1033 *pos += 3;
1034
1035- if (kind == HIGH_BOUND_DEFAULT || kind == NONE_BOUND_DEFAULT)
1036+ if ((kind & SUBARRAY_LOW_BOUND) == SUBARRAY_LOW_BOUND)
1037 low = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1038- if (kind == LOW_BOUND_DEFAULT || kind == NONE_BOUND_DEFAULT)
1039+ if ((kind & SUBARRAY_HIGH_BOUND) == SUBARRAY_HIGH_BOUND)
1040 high = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1041
1042 if (noside == EVAL_SKIP)
1043@@ -1405,7 +1405,7 @@
1044
1045 *low = 0;
1046 *high = 0;
1047- *kind = BOTH_BOUND_DEFAULT;
1048+ *kind = SUBARRAY_NONE_BOUND;
1049
1050 if (TYPE_NFIELDS (type) == 0)
1051 return;
1052@@ -1413,15 +1413,14 @@
1053 i = 0;
1054 if (strcmp (TYPE_FIELD_NAME (type, 0), "start") == 0)
1055 {
1056- *kind = HIGH_BOUND_DEFAULT;
1057+ *kind = SUBARRAY_LOW_BOUND;
1058 *low = value_as_long (value_field (range, 0));
1059 ++i;
1060 }
1061 if (TYPE_NFIELDS (type) > i
1062 && strcmp (TYPE_FIELD_NAME (type, i), "end") == 0)
1063 {
1064- *kind = (*kind == BOTH_BOUND_DEFAULT
1065- ? LOW_BOUND_DEFAULT : NONE_BOUND_DEFAULT);
1066+ *kind = (range_type) (*kind | SUBARRAY_HIGH_BOUND);
1067 *high = value_as_long (value_field (range, i));
1068 }
1069 }
1070@@ -1436,7 +1435,7 @@
1071 struct type *rhstype;
1072 LONGEST low, high_bound;
1073 /* Initialized to appease the compiler. */
1074- enum range_type kind = BOTH_BOUND_DEFAULT;
1075+ enum range_type kind = SUBARRAY_NONE_BOUND;
1076 LONGEST high = 0;
1077 int want_slice = 0;
1078
1079@@ -1498,7 +1497,7 @@
1080 error (_("Cannot subscript non-array type"));
1081
1082 if (want_slice
1083- && (kind == BOTH_BOUND_DEFAULT || kind == LOW_BOUND_DEFAULT))
1084+ && ((kind & SUBARRAY_LOW_BOUND) != SUBARRAY_LOW_BOUND))
1085 low = low_bound;
1086 if (low < 0)
1087 error (_("Index less than zero"));
1088@@ -1516,7 +1515,7 @@
1089 CORE_ADDR addr;
1090 struct value *addrval, *tem;
1091
1092- if (kind == BOTH_BOUND_DEFAULT || kind == HIGH_BOUND_DEFAULT)
1093+ if ((kind & SUBARRAY_HIGH_BOUND) != SUBARRAY_HIGH_BOUND)
1094 high = high_bound;
1095 if (high < 0)
1096 error (_("High index less than zero"));
1097Index: gdb-7.99.90.20170420/gdb/testsuite/gdb.fortran/static-arrays.exp
1098===================================================================
1099--- /dev/null 1970-01-01 00:00:00.000000000 +0000
1100+++ gdb-7.99.90.20170420/gdb/testsuite/gdb.fortran/static-arrays.exp 2017-04-20 22:26:14.367446632 +0200
1101@@ -0,0 +1,421 @@
1102+# Copyright 2015 Free Software Foundation, Inc.
1103+#
1104+# Contributed by Intel Corp. <christoph.t.weinmann@intel.com>
1105+#
1106+# This program is free software; you can redistribute it and/or modify
1107+# it under the terms of the GNU General Public License as published by
1108+# the Free Software Foundation; either version 3 of the License, or
1109+# (at your option) any later version.
1110+#
1111+# This program is distributed in the hope that it will be useful,
1112+# but WITHOUT ANY WARRANTY; without even the implied warranty of
1113+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1114+# GNU General Public License for more details.
1115+#
1116+# You should have received a copy of the GNU General Public License
1117+# along with this program. If not, see <http://www.gnu.org/licenses/>.
1118+
1119+standard_testfile static-arrays.f90
1120+
1121+if { [prepare_for_testing $testfile.exp $testfile $srcfile {debug f90}] } {
1122+ return -1
1123+}
1124+
1125+if ![runto MAIN__] then {
1126+ perror "couldn't run to breakpoint MAIN__"
1127+ continue
1128+}
1129+
1130+gdb_breakpoint [gdb_get_line_number "BP1"]
1131+gdb_continue_to_breakpoint "BP1" ".*BP1.*"
1132+
1133+# Tests subarrays of one dimensional arrays with subrange variations
1134+gdb_test "print ar1" "\\$\[0-9\]+ = \\(1, 2, 3, 4, 5, 6, 7, 8, 9\\)" \
1135+ "print ar1."
1136+gdb_test "print ar1\(4:7\)" "\\$\[0-9\]+ = \\(4, 5, 6, 7\\)" \
1137+ "print ar1\(4:7\)"
1138+gdb_test "print ar1\(8:\)" "\\$\[0-9\]+ = \\(8, 9\\).*" \
1139+ "print ar1\(8:\)"
1140+gdb_test "print ar1\(:3\)" "\\$\[0-9\]+ = \\(1, 2, 3\\).*" \
1141+ "print ar1\(:3\)"
1142+gdb_test "print ar1\(:\)" "\\$\[0-9\]+ = \\(1, 2, 3, 4, 5, 6, 7, 8, 9\\)" \
1143+ "print ar1\(:\)"
1144+
1145+# Check assignment
1146+gdb_test_no_output "set \$my_ary = ar1\(3:8\)"
1147+gdb_test "print \$my_ary" \
1148+ "\\$\[0-9\]+ = \\(3, 4, 5, 6, 7, 8\\)" \
1149+ "Assignment of subarray to variable"
1150+gdb_test_no_output "set ar1\(5\) = 42"
1151+ gdb_test "print ar1\(3:8\)" \
1152+ "\\$\[0-9\]+ = \\(3, 4, 42, 6, 7, 8\\)" \
1153+ "print ar1\(3:8\) after assignment"
1154+gdb_test "print \$my_ary" \
1155+ "\\$\[0-9\]+ = \\(3, 4, 5, 6, 7, 8\\)" \
1156+ "Assignment of subarray to variable after original array changed"
1157+
1158+# Test for subarrays of one dimensional arrays with literals
1159+ gdb_test "print ar1\(3\)" "\\$\[0-9\]+ = 3" \
1160+ "print ar1\(3\)"
1161+
1162+# Tests for subranges of 2 dimensional arrays with subrange variations
1163+gdb_test "print ar2\(2:3, 3:4\)" \
1164+ "\\$\[0-9\]+ = \\(\\( 23, 33\\) \\( 24, 34\\) \\)" \
1165+ "print ar2\(2:3, 3:4\)."
1166+gdb_test "print ar2\(8:9,8:\)" \
1167+ "\\$\[0-9\]+ = \\(\\( 88, 98\\) \\( 89, 99\\) \\)" \
1168+ "print ar2\(8:9,8:\)"
1169+gdb_test "print ar2\(8:9,:2\)" \
1170+ "\\$\[0-9\]+ = \\(\\( 81, 91\\) \\( 82, 92\\) \\)" \
1171+ "print ar2\(8:9,:2\)"
1172+
1173+gdb_test "print ar2\(8:,8:9\)" \
1174+ "\\$\[0-9\]+ = \\(\\( 88, 98\\) \\( 89, 99\\) \\)" \
1175+ "print ar2\(8:,8:9\)"
1176+gdb_test "print ar2\(8:,8:\)" \
1177+ "\\$\[0-9\]+ = \\(\\( 88, 98\\) \\( 89, 99\\) \\)" \
1178+ "print ar2\(8:,8:\)"
1179+gdb_test "print ar2\(8:,:2\)" \
1180+ "\\$\[0-9\]+ = \\(\\( 81, 91\\) \\( 82, 92\\) \\)" \
1181+ "print ar2\(8:,:2\)"
1182+
1183+gdb_test "print ar2\(:2,2:3\)" \
1184+ "\\$\[0-9\]+ = \\(\\( 12, 22\\) \\( 13, 23\\) \\)" \
1185+ "print ar2\(:2,2:3\)"
1186+gdb_test "print ar2\(:2,8:\)" \
1187+ "\\$\[0-9\]+ = \\(\\( 18, 28\\) \\( 19, 29\\) \\)" \
1188+ "print ar2\(:2,8:\)"
1189+gdb_test "print ar2\(:2,:2\)" \
1190+ "\\$\[0-9\]+ = \\(\\( 11, 21\\) \\( 12, 22\\) \\)" \
1191+ "print ar2\(:2,:2\)"
1192+
1193+# Test subranges of 2 dimensional arrays with literals and subrange variations
1194+gdb_test "print ar2\(7, 3:6\)" \
1195+ "\\$\[0-9\]+ = \\(73, 74, 75, 76\\)" \
1196+ "print ar2\(7, 3:6\)"
1197+gdb_test "print ar2\(7,8:\)" \
1198+ "\\$\[0-9\]+ = \\(78, 79\\)" \
1199+ "print ar2\(7,8:\)"
1200+gdb_test "print ar2\(7,:2\)" \
1201+ "\\$\[0-9\]+ = \\(71, 72\\)" \
1202+ "print ar2\(7,:2\)"
1203+
1204+gdb_test "print ar2\(7:8,4\)" \
1205+ "\\$\[0-9\]+ = \\(74, 84\\)" \
1206+ "print ar2(7:8,4\)"
1207+gdb_test "print ar2\(8:,4\)" \
1208+ "\\$\[0-9\]+ = \\(84, 94\\)" \
1209+ "print ar2\(8:,4\)"
1210+gdb_test "print ar2\(:2,4\)" \
1211+ "\\$\[0-9\]+ = \\(14, 24\\)" \
1212+ "print ar2\(:2,4\)"
1213+gdb_test "print ar2\(3,4\)" \
1214+ "\\$\[0-9\]+ = 34" \
1215+ "print ar2\(3,4\)"
1216+
1217+# Test subarrays of 3 dimensional arrays with literals and subrange variations
1218+gdb_test "print ar3\(2:4,3:4,7:8\)" \
1219+ "\\$\[0-9\]+ = \\(\\( \\( 237, 337, 437\\) \\( 247, 347, 447\\)\
1220+ \\) \\( \\( 238, 338, 438\\) \\( 248, 348, 448\\) \\) \\)" \
1221+ "print ar3\(2:4,3:4,7:8\)"
1222+gdb_test "print ar3\(2:3,4:5,8:\)" \
1223+ "\\$\[0-9\]+ = \\(\\( \\( 248, 348\\) \\( 258, 358\\) \\) \\(\
1224+ \\( 249, 349\\) \\( 259, 359\\) \\) \\)" \
1225+ "print ar3\(2:3,4:5,8:\)"
1226+gdb_test "print ar3\(2:3,4:5,:2\)" \
1227+ "\\$\[0-9\]+ = \\(\\( \\( 241, 341\\) \\( 251, 351\\) \\) \\(\
1228+ \\( 242, 342\\) \\( 252, 352\\) \\) \\)" \
1229+ "print ar3\(2:3,4:5,:2\)"
1230+
1231+gdb_test "print ar3\(2:3,8:,7:8\)" \
1232+ "\\$\[0-9\]+ = \\(\\( \\( 287, 387\\) \\( 297, 397\\) \\) \\(\
1233+ \\( 288, 388\\) \\( 298, 398\\) \\) \\)" \
1234+ "print ar3\(2:3,8:,7:8\)"
1235+gdb_test "print ar3\(2:3,8:,8:\)" \
1236+ "\\$\[0-9\]+ = \\(\\( \\( 288, 388\\) \\( 298, 398\\) \\) \\(\
1237+ \\( 289, 389\\) \\( 299, 399\\) \\) \\)" \
1238+ "print ar3\(2:3,8:,8:\)"
1239+gdb_test "print ar3\(2:3,8:,:2\)" \
1240+ "\\$\[0-9\]+ = \\(\\( \\( 281, 381\\) \\( 291, 391\\) \\) \\(\
1241+ \\( 282, 382\\) \\( 292, 392\\) \\) \\)" \
1242+ "print ar3\(2:3,8:,:2\)"
1243+
1244+gdb_test "print ar3\(2:3,:2,7:8\)" \
1245+ "\\$\[0-9\]+ = \\(\\( \\( 217, 317\\) \\( 227, 327\\) \\) \\(\
1246+ \\( 218, 318\\) \\( 228, 328\\) \\) \\)" \
1247+ "print ar3\(2:3,:2,7:8\)"
1248+gdb_test "print ar3\(2:3,:2,8:\)" \
1249+ "\\$\[0-9\]+ = \\(\\( \\( 218, 318\\) \\( 228, 328\\) \\) \\(\
1250+ \\( 219, 319\\) \\( 229, 329\\) \\) \\)" \
1251+ "print ar3\(2:3,:2,8:\)"
1252+gdb_test "print ar3\(2:3,:2,:2\)" \
1253+ "\\$\[0-9\]+ = \\(\\( \\( 211, 311\\) \\( 221, 321\\) \\) \\(\
1254+ \\( 212, 312\\) \\( 222, 322\\) \\) \\)" \
1255+ "print ar3\(2:3,:2,:2\)"
1256+
1257+gdb_test "print ar3\(8:,3:4,7:8\)" \
1258+ "\\$\[0-9\]+ = \\(\\( \\( 837, 937\\) \\( 847, 947\\) \\) \\(\
1259+ \\( 838, 938\\) \\( 848, 948\\) \\) \\)" \
1260+ "print ar3\(8:,3:4,7:8\)"
1261+gdb_test "print ar3\(8:,4:5,8:\)" \
1262+ "\\$\[0-9\]+ = \\(\\( \\( 848, 948\\) \\( 858, 958\\) \\) \\(\
1263+ \\( 849, 949\\) \\( 859, 959\\) \\) \\)" \
1264+ "print ar3\(8:,4:5,8:\)"
1265+gdb_test "print ar3\(8:,4:5,:2\)" \
1266+ "\\$\[0-9\]+ = \\(\\( \\( 841, 941\\) \\( 851, 951\\) \\) \\(\
1267+ \\( 842, 942\\) \\( 852, 952\\) \\) \\)" \
1268+ "print ar3\(8:,4:5,:2\)"
1269+
1270+gdb_test "print ar3\(8:,8:,7:8\)" \
1271+ "\\$\[0-9\]+ = \\(\\( \\( 887, 987\\) \\( 897, 997\\) \\) \\(\
1272+ \\( 888, 988\\) \\( 898, 998\\) \\) \\)" \
1273+ "print ar3\(8:,8:,7:8\)"
1274+gdb_test "print ar3\(8:,8:,8:\)" \
1275+ "\\$\[0-9\]+ = \\(\\( \\( 888, 988\\) \\( 898, 998\\) \\) \\(\
1276+ \\( 889, 989\\) \\( 899, 999\\) \\) \\)" \
1277+ "print ar3\(8:,8:,8:\)"
1278+gdb_test "print ar3\(8:,8:,:2\)" \
1279+ "\\$\[0-9\]+ = \\(\\( \\( 881, 981\\) \\( 891, 991\\) \\) \\(\
1280+ \\( 882, 982\\) \\( 892, 992\\) \\) \\)" \
1281+ "print ar3\(8:,8:,:2\)"
1282+
1283+gdb_test "print ar3\(8:,:2,7:8\)" \
1284+ "\\$\[0-9\]+ = \\(\\( \\( 817, 917\\) \\( 827, 927\\) \\) \\(\
1285+ \\( 818, 918\\) \\( 828, 928\\) \\) \\)" \
1286+ "print ar3\(8:,:2,7:8\)"
1287+gdb_test "print ar3\(8:,:2,8:\)" \
1288+ "\\$\[0-9\]+ = \\(\\( \\( 818, 918\\) \\( 828, 928\\) \\) \\(\
1289+ \\( 819, 919\\) \\( 829, 929\\) \\) \\)" \
1290+ "print ar3\(8:,:2,8:\)"
1291+gdb_test "print ar3\(8:,:2,:2\)" \
1292+ "\\$\[0-9\]+ = \\(\\( \\( 811, 911\\) \\( 821, 921\\) \\) \\(\
1293+ \\( 812, 912\\) \\( 822, 922\\) \\) \\)" \
1294+ "print ar3\(8:,:2,:2\)"
1295+
1296+
1297+gdb_test "print ar3\(:2,3:4,7:8\)" \
1298+ "\\$\[0-9\]+ = \\(\\( \\( 137, 237\\) \\( 147, 247\\) \\) \\(\
1299+ \\( 138, 238\\) \\( 148, 248\\) \\) \\)" \
1300+ "print ar3 \(:2,3:4,7:8\)."
1301+gdb_test "print ar3\(:2,3:4,8:\)" \
1302+ "\\$\[0-9\]+ = \\(\\( \\( 138, 238\\) \\( 148, 248\\) \\) \\(\
1303+ \\( 139, 239\\) \\( 149, 249\\) \\) \\)" \
1304+ "print ar3\(:2,3:4,8:\)"
1305+gdb_test "print ar3\(:2,3:4,:2\)" \
1306+ "\\$\[0-9\]+ = \\(\\( \\( 131, 231\\) \\( 141, 241\\) \\) \\(\
1307+ \\( 132, 232\\) \\( 142, 242\\) \\) \\)" \
1308+ "print ar3\(:2,3:4,:2\)"
1309+
1310+gdb_test "print ar3\(:2,8:,7:8\)" "\\$\[0-9\]+ = \\(\\( \\( 187, 287\\) \\(\
1311+ 197, 297\\) \\) \\( \\( 188, 288\\) \\( 198, 298\\) \\) \\)" \
1312+ "print ar3\(:2,8:,7:8\)"
1313+gdb_test "print ar3\(:2,8:,8:\)" "\\$\[0-9\]+ = \\(\\( \\( 188, 288\\) \\( 198,\
1314+ 298\\) \\) \\( \\( 189, 289\\) \\( 199, 299\\) \\) \\)" \
1315+ "print ar3\(:2,8:,8:\)"
1316+gdb_test "print ar3\(:2,8:,:2\)" "\\$\[0-9\]+ = \\(\\( \\( 181, 281\\) \\( 191,\
1317+ 291\\) \\) \\( \\( 182, 282\\) \\( 192, 292\\) \\) \\)" \
1318+ "print ar3\(:2,8:,:2\)"
1319+
1320+gdb_test "print ar3\(:2,:2,7:8\)" \
1321+ "\\$\[0-9\]+ = \\(\\( \\( 117, 217\\) \\( 127, 227\\) \\) \\(\
1322+ \\( 118, 218\\) \\( 128, 228\\) \\) \\)" \
1323+ "print ar3\(:2,:2,7:8\)"
1324+gdb_test "print ar3\(:2,:2,8:\)" \
1325+ "\\$\[0-9\]+ = \\(\\( \\( 118, 218\\) \\( 128, 228\\) \\) \\(\
1326+ \\( 119, 219\\) \\( 129, 229\\) \\) \\)" \
1327+ "print ar3\(:2,:2,8:\)"
1328+gdb_test "print ar3\(:2,:2,:2\)" \
1329+ "\\$\[0-9\]+ = \\(\\( \\( 111, 211\\) \\( 121, 221\\) \\) \\(\
1330+ \\( 112, 212\\) \\( 122, 222\\) \\) \\)" \
1331+ "print ar3\(:2,:2,:2\)"
1332+
1333+#Tests for subarrays of 3 dimensional arrays with literals and subranges
1334+gdb_test "print ar3\(3,3:4,7:8\)" \
1335+ "\\$\[0-9\]+ = \\(\\( 337, 347\\) \\( 338, 348\\) \\)" \
1336+ "print ar3\(3,3:4,7:8\)"
1337+gdb_test "print ar3\(3,4:5,8:\)" \
1338+ "\\$\[0-9\]+ = \\(\\( 348, 358\\) \\( 349, 359\\) \\)" \
1339+ "print ar3\(3,4:5,8:\)"
1340+gdb_test "print ar3\(3,4:5,:2\)" \
1341+ "\\$\[0-9\]+ = \\(\\( 341, 351\\) \\( 342, 352\\) \\)" \
1342+ "print ar3\(3,4:5,:2\)"
1343+gdb_test "print ar3\(3,4:5,3\)" \
1344+ "\\$\[0-9\]+ = \\(343, 353\\)" \
1345+ "print ar3\(3,4:5,3\)"
1346+
1347+gdb_test "print ar3\(2,8:,7:8\)" \
1348+ "\\$\[0-9\]+ = \\(\\( 287, 297\\) \\( 288, 298\\) \\)" \
1349+ "print ar3\(2,8:,7:8\)"
1350+gdb_test "print ar3\(2,8:,8:\)" \
1351+ "\\$\[0-9\]+ = \\(\\( 288, 298\\) \\( 289, 299\\) \\)" \
1352+ "print ar3\(2,8:,8:\)"
1353+gdb_test "print ar3\(2,8:,:2\)"\
1354+ "\\$\[0-9\]+ = \\(\\( 281, 291\\) \\( 282, 292\\) \\)" \
1355+ "print ar3\(2,8:,:2\)"
1356+gdb_test "print ar3\(2,8:,3\)" \
1357+ "\\$\[0-9\]+ = \\(283, 293\\)" \
1358+ "print ar3\(2,8:,3\)"
1359+
1360+gdb_test "print ar3\(2,:2,7:8\)" \
1361+ "\\$\[0-9\]+ = \\(\\( 217, 227\\) \\( 218, 228\\) \\)" \
1362+ "print ar3\(2,:2,7:8\)"
1363+gdb_test "print ar3\(2,:2,8:\)" \
1364+ "\\$\[0-9\]+ = \\(\\( 218, 228\\) \\( 219, 229\\) \\)" \
1365+ "print ar3\(2,:2,8:\)"
1366+gdb_test "print ar3\(2,:2,:2\)" \
1367+ "\\$\[0-9\]+ = \\(\\( 211, 221\\) \\( 212, 222\\) \\)" \
1368+ "print ar3\(2,:2,:2\)"
1369+gdb_test "print ar3\(2,:2,3\)" \
1370+ "\\$\[0-9\]+ = \\(213, 223\\)" \
1371+ "print ar3\(2,:2,3\)"
1372+
1373+gdb_test "print ar3\(3,4,7:8\)" \
1374+ "\\$\[0-9\]+ = \\(347, 348\\)" \
1375+ "print ar3\(3,4,7:8\)"
1376+gdb_test "print ar3\(3,4,8:\)" \
1377+ "\\$\[0-9\]+ = \\(348, 349\\)" \
1378+i "print ar3\(3,4,8:\)"
1379+gdb_test "print ar3\(3,4,:2\)" \
1380+ "\\$\[0-9\]+ = \\(341, 342\\)" \
1381+ "print ar3\(3,4,:2\)"
1382+gdb_test "print ar3\(5,6,7\)" \
1383+ "\\$\[0-9\]+ = 567" \
1384+ "print ar3\(5,6,7\)"
1385+
1386+gdb_test "print ar3\(3:4,6,7:8\)" \
1387+ "\\$\[0-9\]+ = \\(\\( 367, 467\\) \\( 368, 468\\) \\)" \
1388+ "print ar3\(3:4,6,7:8\)"
1389+gdb_test "print ar3\(3:4,6,8:\)" \
1390+ "\\$\[0-9\]+ = \\(\\( 368, 468\\) \\( 369, 469\\) \\)" \
1391+ "print ar3\(3:4,6,8:\)"
1392+gdb_test "print ar3\(3:4,6,:2\)" \
1393+ "\\$\[0-9\]+ = \\(\\( 361, 461\\) \\( 362, 462\\) \\)" \
1394+ "print ar3\(3:4,6,:2\)"
1395+gdb_test "print ar3\(3:4,6,5\)" \
1396+ "\\$\[0-9\]+ = \\(365, 465\\)" \
1397+ "print ar3\(3:4,6,5\)"
1398+
1399+gdb_test "print ar3\(8:,6,7:8\)" \
1400+ "\\$\[0-9\]+ = \\(\\( 867, 967\\) \\( 868, 968\\) \\)" \
1401+ "print ar3\(8:,6,7:8\)"
1402+gdb_test "print ar3\(8:,6,8:\)" \
1403+ "\\$\[0-9\]+ = \\(\\( 868, 968\\) \\( 869, 969\\) \\)" \
1404+ "print ar3\(8:,6,8:\)"
1405+gdb_test "print ar3\(8:,6,:2\)" \
1406+ "\\$\[0-9\]+ = \\(\\( 861, 961\\) \\( 862, 962\\) \\)" \
1407+ "print ar3\(8:,6,:2\)"
1408+gdb_test "print ar3\(8:,6,5\)" \
1409+ "\\$\[0-9\]+ = \\(865, 965\\)" \
1410+ "print ar3\(8:,6,5\)"
1411+
1412+gdb_test "print ar3\(:2,6,7:8\)" \
1413+ "\\$\[0-9\]+ = \\(\\( 167, 267\\) \\( 168, 268\\) \\)" \
1414+ "print ar3\(:2,6,7:8\)"
1415+gdb_test "print ar3\(:2,6,8:\)" \
1416+ "\\$\[0-9\]+ = \\(\\( 168, 268\\) \\( 169, 269\\) \\)" \
1417+ "print ar3\(:2,6,8:\)"
1418+gdb_test "print ar3\(:2,6,:2\)" \
1419+ "\\$\[0-9\]+ = \\(\\( 161, 261\\) \\( 162, 262\\) \\)" \
1420+ "print ar3\(:2,6,:2\)"
1421+gdb_test "print ar3\(:2,6,5\)" \
1422+ "\\$\[0-9\]+ = \\(165, 265\\)" \
1423+ "print ar3\(:2,6,5\)"
1424+
1425+gdb_test "print ar3\(3:4,5:6,4\)" \
1426+ "\\$\[0-9\]+ = \\(\\( 354, 454\\) \\( 364, 464\\) \\)" \
1427+ "print ar2\(3:4,5:6,4\)"
1428+gdb_test "print ar3\(8:,5:6,4\)" \
1429+ "\\$\[0-9\]+ = \\(\\( 854, 954\\) \\( 864, 964\\) \\)" \
1430+ "print ar2\(8:,5:6,4\)"
1431+gdb_test "print ar3\(:2,5:6,4\)" \
1432+ "\\$\[0-9\]+ = \\(\\( 154, 254\\) \\( 164, 264\\) \\)" \
1433+ "print ar2\(:2,5:6,4\)"
1434+
1435+# Stride > 1
1436+gdb_test "print ar1\(2:6:2\)" \
1437+ "\\$\[0-9\]+ = \\(2, 4, 6\\)" \
1438+ "print ar1\(2:6:2\)"
1439+gdb_test "print ar2\(2:6:2,3:4\)" \
1440+ "\\$\[0-9\]+ = \\(\\( 23, 43, 63\\) \\( 24, 44, 64\\) \\)" \
1441+ "print ar2\(2:6:2,3:4\)"
1442+gdb_test "print ar2\(2:6:2,3\)" \
1443+ "\\$\[0-9\]+ = \\(23, 43, 63\\)" \
1444+ "print ar2\(2:6:2,3\)"
1445+gdb_test "print ar3\(2:6:2,3:5:2,4:7:3\)" \
1446+ "\\$\[0-9\]+ = \\(\\( \\( 234, 434, 634\\) \\( 254, 454, 654\\)\
1447+ \\) \\( \\( 237, 437, 637\\) \\( 257, 457, 657\\) \\) \\)" \
1448+ "print ar3\(2:6:2,3:5:2,4:7:3\)"
1449+gdb_test "print ar3\(2:6:2,5,4:7:3\)" \
1450+ "\\$\[0-9\]+ = \\(\\( 254, 454, 654\\) \\( 257, 457, 657\\)\
1451+ \\)" \
1452+ "print ar3\(2:6:2,5,4:7:3\)"
1453+
1454+# Stride < 0
1455+gdb_test "print ar1\(8:2:-2\)" \
1456+ "\\$\[0-9\]+ = \\(8, 6, 4, 2\\)" \
1457+ "print ar1\(8:2:-2\)"
1458+gdb_test "print ar2\(8:2:-2,3:4\)" \
1459+ "\\$\[0-9\]+ = \\(\\( 83, 63, 43, 23\\) \\( 84, 64, 44, 24\\)\
1460+ \\)" \
1461+ "print ar2\(8:2:-2,3:4\)"
1462+gdb_test "print ar2\(2:6:2,3\)" \
1463+ "\\$\[0-9\]+ = \\(23, 43, 63\\)" \
1464+ "print ar2\(2:6:2,3\)"
1465+gdb_test "print ar3\(2:3,7:3:-4,4:7:3\)" \
1466+ "\\$\[0-9\]+ = \\(\\( \\( 274, 374\\) \\( 234, 334\\) \\) \\(\
1467+ \\( 277, 377\\) \\( 237, 337\\) \\) \\)" \
1468+ "print ar3\(2:3,7:3:-4,4:7:3\)"
1469+gdb_test "print ar3\(2:6:2,5,7:4:-3\)" \
1470+ "\\$\[0-9\]+ = \\(\\( 257, 457, 657\\) \\( 254, 454, 654\\)\
1471+ \\)" \
1472+ "print ar3\(2:6:2,5,7:4:-3\)"
1473+
1474+# Tests with negative and mixed indices
1475+gdb_test "p ar4\(2:4, -2:1, -15:-14\)" \
1476+ "\\$\[0-9\]+ = \\(\\( \\( 261, 361, 461\\) \\( 271, 371, 471\\)\
1477+ \\( 281, 381, 481\\) \\( 291, 391, 491\\) \\) \\( \\( 262,\
1478+ 362, 462\\) \\( 272, 372, 472\\) \\( 282, 382, 482\\) \\( 292,\
1479+ 392, 492\\) \\) \\)" \
1480+ "print ar4(2:4, -2:1, -15:-14)"
1481+
1482+gdb_test "p ar4\(7,-6:2:3,-7\)" \
1483+ "\\$\[0-9\]+ = \\(729, 759, 789\\)" \
1484+ "print ar4(7,-6:2:3,-7)"
1485+
1486+gdb_test "p ar4\(9:2:-2, -6:2:3, -6:-15:-3\)" \
1487+ "\\$\[0-9\]+ = \\(\\( \\( 930, 730, 530, 330\\) \\( 960, 760,\
1488+ 560, 360\\) \\( 990, 790, 590, 390\\) \\) \\( \\( 927, 727,\
1489+ 527, 327\\) \\( 957, 757, 557, 357\\) \\( 987, 787, 587,\
1490+ 387\\) \\) \\( \\( 924, 724, 524, 324\\) \\( 954, 754, 554,\
1491+ 354\\) \\( 984, 784, 584, 384\\) \\) \\( \\( 921, 721, 521,\
1492+ 321\\) \\( 951, 751, 551, 351\\) \\( 981, 781, 581, 381\\) \\)\
1493+ \\)" \
1494+ "print ar4(9:2:-2, -6:2:3, -6:-15:-3)"
1495+
1496+gdb_test "p ar4\(:,:,:\)" \
1497+ "\\$\[0-9\]+ = \\(\\( \\( 111, 211, 311, 411, 511, 611, 711,\
1498+ 811, .*" \
1499+ "print ar4(:,:,:)"
1500+
1501+# Provoke error messages for bad user input
1502+gdb_test "print ar1\(0:4\)" \
1503+ "provided bound\\(s\\) outside array bound\\(s\\)" \
1504+ "print ar1\(0:4\)"
1505+gdb_test "print ar1\(8:12\)" \
1506+ "provided bound\\(s\\) outside array bound\\(s\\)" \
1507+ "print ar1\(8:12\)"
1508+gdb_test "print ar1\(8:2:\)" \
1509+ "A syntax error in expression, near `\\)'." \
1510+ "print ar1\(8:2:\)"
1511+gdb_test "print ar1\(8:2:2\)" \
1512+ "Wrong value provided for stride and boundaries" \
1513+ "print ar1\(8:2:2\)"
1514+gdb_test "print ar1\(2:8:-2\)" \
1515+ "Wrong value provided for stride and boundaries" \
1516+ "print ar1\(2:8:-2\)"
1517+gdb_test "print ar1\(2:7:0\)" \
1518+ "Stride must not be 0" \
1519+ "print ar1\(2:7:0\)"
1520+gdb_test "print ar1\(3:7\) = 42" \
1521+ "Invalid cast." \
1522+ "Assignment of value to subarray"
1523Index: gdb-7.99.90.20170420/gdb/testsuite/gdb.fortran/static-arrays.f90
1524===================================================================
1525--- /dev/null 1970-01-01 00:00:00.000000000 +0000
1526+++ gdb-7.99.90.20170420/gdb/testsuite/gdb.fortran/static-arrays.f90 2017-04-20 22:26:14.368446638 +0200
1527@@ -0,0 +1,55 @@
1528+! Copyright 2015 Free Software Foundation, Inc.
1529+!
1530+! Contributed by Intel Corp. <christoph.t.weinmann@intel.com>
1531+!
1532+! This program is free software; you can redistribute it and/or modify
1533+! it under the terms of the GNU General Public License as published by
1534+! the Free Software Foundation; either version 3 of the License, or
1535+! (at your option) any later version.
1536+!
1537+! This program is distributed in the hope that it will be useful,
1538+! but WITHOUT ANY WARRANTY; without even the implied warranty of
1539+! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1540+! GNU General Public License for more details.
1541+!
1542+! You should have received a copy of the GNU General Public License
1543+! along with this program. If not, see <http://www.gnu.org/licenses/>.
1544+
1545+subroutine sub
1546+ integer, dimension(9) :: ar1
1547+ integer, dimension(9,9) :: ar2
1548+ integer, dimension(9,9,9) :: ar3
1549+ integer, dimension(10,-7:3, -15:-5) :: ar4
1550+ integer :: i,j,k
1551+
1552+ ar1 = 1
1553+ ar2 = 1
1554+ ar3 = 1
1555+ ar4 = 4
1556+
1557+ ! Resulting array ar3 looks like ((( 111, 112, 113, 114,...)))
1558+ do i = 1, 9, 1
1559+ ar1(i) = i
1560+ do j = 1, 9, 1
1561+ ar2(i,j) = i*10 + j
1562+ do k = 1, 9, 1
1563+ ar3(i,j,k) = i*100 + j*10 + k
1564+ end do
1565+ end do
1566+ end do
1567+
1568+ do i = 1, 10, 1
1569+ do j = -7, 3, 1
1570+ do k = -15, -5, 1
1571+ ar4(i,j,k) = i*100 + (j+8)*10 + (k+16)
1572+ end do
1573+ end do
1574+ end do
1575+
1576+ ar1(1) = 11 !BP1
1577+ return
1578+end
1579+
1580+program testprog
1581+ call sub
1582+end
1583Index: gdb-7.99.90.20170420/gdb/testsuite/gdb.fortran/vla-ptype.exp
1584===================================================================
1585--- gdb-7.99.90.20170420.orig/gdb/testsuite/gdb.fortran/vla-ptype.exp 2017-04-20 22:25:43.973254685 +0200
1586+++ gdb-7.99.90.20170420/gdb/testsuite/gdb.fortran/vla-ptype.exp 2017-04-20 22:26:14.368446638 +0200
1587@@ -98,3 +98,7 @@
1588 gdb_test "ptype vla2(5, 45, 20)" \
1589 "no such vector element \\\(vector not allocated\\\)" \
1590 "ptype vla2(5, 45, 20) not allocated"
1591+
1592+gdb_breakpoint [gdb_get_line_number "vla1-neg-bounds"]
1593+gdb_continue_to_breakpoint "vla1-neg-bounds"
1594+gdb_test "ptype vla1" "type = $real \\(-2:1,-5:4,-3:-1\\)" "ptype vla1 negative bounds"
1595Index: gdb-7.99.90.20170420/gdb/testsuite/gdb.fortran/vla-sizeof.exp
1596===================================================================
1597--- gdb-7.99.90.20170420.orig/gdb/testsuite/gdb.fortran/vla-sizeof.exp 2017-04-20 22:25:43.973254685 +0200
1598+++ gdb-7.99.90.20170420/gdb/testsuite/gdb.fortran/vla-sizeof.exp 2017-04-20 22:26:14.368446638 +0200
1599@@ -44,3 +44,7 @@
1600 gdb_breakpoint [gdb_get_line_number "pvla-associated"]
1601 gdb_continue_to_breakpoint "pvla-associated"
1602 gdb_test "print sizeof(pvla)" " = 4000" "print sizeof associated pvla"
1603+
1604+gdb_breakpoint [gdb_get_line_number "vla1-neg-bounds"]
1605+gdb_continue_to_breakpoint "vla1-neg-bounds"
1606+gdb_test "print sizeof(vla1)" " = 480" "print sizeof vla1 negative bounds"
1607Index: gdb-7.99.90.20170420/gdb/testsuite/gdb.fortran/vla-stride.exp
1608===================================================================
1609--- /dev/null 1970-01-01 00:00:00.000000000 +0000
1610+++ gdb-7.99.90.20170420/gdb/testsuite/gdb.fortran/vla-stride.exp 2017-04-20 22:26:14.368446638 +0200
1611@@ -0,0 +1,44 @@
1612+# Copyright 2016 Free Software Foundation, Inc.
1613+
1614+# This program is free software; you can redistribute it and/or modify
1615+# it under the terms of the GNU General Public License as published by
1616+# the Free Software Foundation; either version 3 of the License, or
1617+# (at your option) any later version.
1618+#
1619+# This program is distributed in the hope that it will be useful,
1620+# but WITHOUT ANY WARRANTY; without even the implied warranty of
1621+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1622+# GNU General Public License for more details.
1623+#
1624+# You should have received a copy of the GNU General Public License
1625+# along with this program. If not, see <http://www.gnu.org/licenses/>.
1626+
1627+standard_testfile ".f90"
1628+
1629+if { [prepare_for_testing ${testfile}.exp ${testfile} ${srcfile} \
1630+ {debug f90 quiet}] } {
1631+ return -1
1632+}
1633+
1634+if ![runto MAIN__] then {
1635+ perror "couldn't run to breakpoint MAIN__"
1636+ continue
1637+}
1638+
1639+gdb_breakpoint [gdb_get_line_number "re-reverse-elements"]
1640+gdb_continue_to_breakpoint "re-reverse-elements"
1641+gdb_test "print pvla" " = \\\(1, 2, 3, 4, 5, 6, 7, 8, 9, 10\\\)" \
1642+ "print re-reverse-elements"
1643+gdb_test "print pvla(1)" " = 1" "print first re-reverse-element"
1644+gdb_test "print pvla(10)" " = 10" "print last re-reverse-element"
1645+
1646+gdb_breakpoint [gdb_get_line_number "odd-elements"]
1647+gdb_continue_to_breakpoint "odd-elements"
1648+gdb_test "print pvla" " = \\\(1, 3, 5, 7, 9\\\)" "print odd-elements"
1649+gdb_test "print pvla(1)" " = 1" "print first odd-element"
1650+gdb_test "print pvla(5)" " = 9" "print last odd-element"
1651+
1652+gdb_breakpoint [gdb_get_line_number "single-element"]
1653+gdb_continue_to_breakpoint "single-element"
1654+gdb_test "print pvla" " = \\\(5\\\)" "print single-element"
1655+gdb_test "print pvla(1)" " = 5" "print one single-element"
1656Index: gdb-7.99.90.20170420/gdb/testsuite/gdb.fortran/vla-stride.f90
1657===================================================================
1658--- /dev/null 1970-01-01 00:00:00.000000000 +0000
1659+++ gdb-7.99.90.20170420/gdb/testsuite/gdb.fortran/vla-stride.f90 2017-04-20 22:26:14.368446638 +0200
1660@@ -0,0 +1,29 @@
1661+! Copyright 2016 Free Software Foundation, Inc.
1662+!
1663+! This program is free software; you can redistribute it and/or modify
1664+! it under the terms of the GNU General Public License as published by
1665+! the Free Software Foundation; either version 3 of the License, or
1666+! (at your option) any later version.
1667+!
1668+! This program is distributed in the hope that it will be useful,
1669+! but WITHOUT ANY WARRANTY; without even the implied warranty of
1670+! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1671+! GNU General Public License for more details.
1672+!
1673+! You should have received a copy of the GNU General Public License
1674+! along with this program. If not, see <http://www.gnu.org/licenses/>.
1675+
1676+program vla_stride
1677+ integer, target, allocatable :: vla (:)
1678+ integer, pointer :: pvla (:)
1679+
1680+ allocate(vla(10))
1681+ vla = (/ (I, I = 1,10) /)
1682+
1683+ pvla => vla(10:1:-1)
1684+ pvla => pvla(10:1:-1)
1685+ pvla => vla(1:10:2) ! re-reverse-elements
1686+ pvla => vla(5:4:-2) ! odd-elements
1687+
1688+ pvla => null() ! single-element
1689+end program vla_stride
1690Index: gdb-7.99.90.20170420/gdb/testsuite/gdb.fortran/vla.f90
1691===================================================================
1692--- gdb-7.99.90.20170420.orig/gdb/testsuite/gdb.fortran/vla.f90 2017-04-20 22:25:43.973254685 +0200
1693+++ gdb-7.99.90.20170420/gdb/testsuite/gdb.fortran/vla.f90 2017-04-20 22:26:14.368446638 +0200
1694@@ -54,4 +54,14 @@
1695
1696 allocate (vla3 (2,2)) ! vla2-deallocated
1697 vla3(:,:) = 13
1698+
1699+ allocate (vla1 (-2:1, -5:4, -3:-1))
1700+ l = allocated(vla1)
1701+
1702+ vla1(:, :, :) = 1
1703+ vla1(-2, -3, -1) = -231
1704+
1705+ deallocate (vla1) ! vla1-neg-bounds
1706+ l = allocated(vla1)
1707+
1708 end program vla
1709Index: gdb-7.99.90.20170420/gdb/valarith.c
1710===================================================================
1711--- gdb-7.99.90.20170420.orig/gdb/valarith.c 2017-04-20 22:25:43.973254685 +0200
1712+++ gdb-7.99.90.20170420/gdb/valarith.c 2017-04-20 22:26:14.369446644 +0200
1713@@ -193,10 +193,16 @@
1714 struct type *array_type = check_typedef (value_type (array));
1715 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
1716 ULONGEST elt_size = type_length_units (elt_type);
1717- ULONGEST elt_offs = elt_size * (index - lowerbound);
1718+ LONGEST elt_offs = index - lowerbound;
1719+ LONGEST elt_stride = TYPE_BYTE_STRIDE (TYPE_INDEX_TYPE (array_type));
1720+
1721+ if (elt_stride != 0)
1722+ elt_offs *= elt_stride;
1723+ else
1724+ elt_offs *= elt_size;
1725
1726 if (index < lowerbound || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
1727- && elt_offs >= type_length_units (array_type)))
1728+ && abs (elt_offs) >= type_length_units (array_type)))
1729 {
1730 if (type_not_associated (array_type))
1731 error (_("no such vector element (vector not associated)"));
1732Index: gdb-7.99.90.20170420/gdb/valops.c
1733===================================================================
1734--- gdb-7.99.90.20170420.orig/gdb/valops.c 2017-04-20 22:25:43.973254685 +0200
1735+++ gdb-7.99.90.20170420/gdb/valops.c 2017-04-20 22:26:14.370446651 +0200
1736@@ -3786,55 +3786,194 @@
1737 struct value *
1738 value_slice (struct value *array, int lowbound, int length)
1739 {
1740+ /* Pass unaltered arguments to VALUE_SLICE_1, plus a default stride
1741+ value of '1', which returns every element between LOWBOUND and
1742+ (LOWBOUND + LENGTH). We also provide a default CALL_COUNT of '1'
1743+ as we are only considering the highest dimension, or we are
1744+ working on a one dimensional array. So we call VALUE_SLICE_1
1745+ exactly once. */
1746+ return value_slice_1 (array, lowbound, length, 1, 1);
1747+}
1748+
1749+/* VALUE_SLICE_1 is called for each array dimension to calculate the number
1750+ of elements as defined by the subscript expression.
1751+ CALL_COUNT is used to determine if we are calling the function once, e.g.
1752+ we are working on the current dimension of ARRAY, or if we are calling
1753+ the function repeatedly. In the later case we need to take elements
1754+ from the TARGET_TYPE of ARRAY.
1755+ With a CALL_COUNT greater than 1 we calculate the offsets for every element
1756+ that should be in the result array. Then we fetch the contents and then
1757+ copy them into the result array. The result array will have one dimension
1758+ less than the input array, so later on we need to recreate the indices and
1759+ ranges in the calling function. */
1760+
1761+struct value *
1762+value_slice_1 (struct value *array, int lowbound, int length,
1763+ int stride_length, int call_count)
1764+{
1765 struct type *slice_range_type, *slice_type, *range_type;
1766- LONGEST lowerbound, upperbound;
1767- struct value *slice;
1768- struct type *array_type;
1769+ struct type *array_type = check_typedef (value_type (array));
1770+ struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
1771+ unsigned int elt_size, elt_offs;
1772+ LONGEST ary_high_bound, ary_low_bound;
1773+ struct value *v;
1774+ int slice_range_size, i = 0, row_count = 1, elem_count = 1;
1775
1776- array_type = check_typedef (value_type (array));
1777+ /* Check for legacy code if we are actually dealing with an array or
1778+ string. */
1779 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
1780 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
1781 error (_("cannot take slice of non-array"));
1782
1783- range_type = TYPE_INDEX_TYPE (array_type);
1784- if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1785- error (_("slice from bad array or bitstring"));
1786-
1787- if (lowbound < lowerbound || length < 0
1788- || lowbound + length - 1 > upperbound)
1789- error (_("slice out of range"));
1790+ ary_low_bound = TYPE_LOW_BOUND (TYPE_INDEX_TYPE (array_type));
1791+ ary_high_bound = TYPE_HIGH_BOUND (TYPE_INDEX_TYPE (array_type));
1792+
1793+ /* When we are working on a multi-dimensional array, we need to get the
1794+ attributes of the underlying type. */
1795+ if (call_count > 1)
1796+ {
1797+ ary_low_bound = TYPE_LOW_BOUND (TYPE_INDEX_TYPE (elt_type));
1798+ ary_high_bound = TYPE_HIGH_BOUND (TYPE_INDEX_TYPE (elt_type));
1799+ elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
1800+ row_count = TYPE_LENGTH (array_type)
1801+ / TYPE_LENGTH (TYPE_TARGET_TYPE (array_type));
1802+ }
1803+
1804+ /* With a stride of '1', the number of elements per result row is equal to
1805+ the LENGTH of the subarray. With non-default stride values, we skip
1806+ elements, but have to add the start element to the total number of
1807+ elements per row. */
1808+ if (stride_length == 1)
1809+ elem_count = length;
1810+ else
1811+ elem_count = ((length - 1) / stride_length) + 1;
1812+
1813+ elt_size = TYPE_LENGTH (elt_type);
1814+ elt_offs = lowbound - ary_low_bound;
1815+
1816+ elt_offs *= elt_size;
1817+
1818+ /* Check for valid user input. In case of Fortran this was already done
1819+ in the calling function. */
1820+ if (call_count == 1
1821+ && (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
1822+ && elt_offs >= TYPE_LENGTH (array_type)))
1823+ error (_("no such vector element"));
1824+
1825+ /* CALL_COUNT is 1 when we are dealing either with the highest dimension
1826+ of the array, or a one dimensional array. Set RANGE_TYPE accordingly.
1827+ In both cases we calculate how many rows/elements will be in the output
1828+ array by setting slice_range_size. */
1829+ if (call_count == 1)
1830+ {
1831+ range_type = TYPE_INDEX_TYPE (array_type);
1832+ slice_range_size = ary_low_bound + elem_count - 1;
1833+
1834+ /* Check if the array bounds are valid. */
1835+ if (get_discrete_bounds (range_type, &ary_low_bound, &ary_high_bound) < 0)
1836+ error (_("slice from bad array or bitstring"));
1837+ }
1838+ /* When CALL_COUNT is greater than 1, we are dealing with an array of arrays.
1839+ So we need to get the type below the current one and set the RANGE_TYPE
1840+ accordingly. */
1841+ else
1842+ {
1843+ range_type = TYPE_INDEX_TYPE (TYPE_TARGET_TYPE (array_type));
1844+ slice_range_size = ary_low_bound + (row_count * elem_count) - 1;
1845+ ary_low_bound = TYPE_LOW_BOUND (range_type);
1846+ }
1847
1848 /* FIXME-type-allocation: need a way to free this type when we are
1849- done with it. */
1850- slice_range_type = create_static_range_type ((struct type *) NULL,
1851- TYPE_TARGET_TYPE (range_type),
1852- lowbound,
1853- lowbound + length - 1);
1854+ done with it. */
1855
1856+ slice_range_type = create_static_range_type (NULL, TYPE_TARGET_TYPE (range_type),
1857+ ary_low_bound, slice_range_size);
1858 {
1859- struct type *element_type = TYPE_TARGET_TYPE (array_type);
1860- LONGEST offset
1861- = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
1862-
1863- slice_type = create_array_type ((struct type *) NULL,
1864- element_type,
1865- slice_range_type);
1866- TYPE_CODE (slice_type) = TYPE_CODE (array_type);
1867+ struct type *element_type;
1868+
1869+ /* When both CALL_COUNT and STRIDE_LENGTH equal 1, we can use the legacy
1870+ code for subarrays. */
1871+ if (call_count == 1 && stride_length == 1)
1872+ {
1873+ element_type = TYPE_TARGET_TYPE (array_type);
1874+
1875+ slice_type = create_array_type (NULL, element_type, slice_range_type);
1876+
1877+ TYPE_CODE (slice_type) = TYPE_CODE (array_type);
1878+
1879+ if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
1880+ v = allocate_value_lazy (slice_type);
1881+ else
1882+ {
1883+ v = allocate_value (slice_type);
1884+ value_contents_copy (v,
1885+ value_embedded_offset (v),
1886+ array,
1887+ value_embedded_offset (array) + elt_offs,
1888+ elt_size * longest_to_int (length));
1889+ }
1890
1891- if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
1892- slice = allocate_value_lazy (slice_type);
1893+ }
1894+ /* With a CALL_COUNT or STRIDE_LENGTH are greater than 1 we are working
1895+ on a range of ranges. So we copy the relevant elements into the
1896+ new array we return. */
1897 else
1898 {
1899- slice = allocate_value (slice_type);
1900- value_contents_copy (slice, 0, array, offset,
1901- type_length_units (slice_type));
1902+ int j, offs_store = elt_offs;
1903+ LONGEST dst_offset = 0;
1904+ LONGEST src_row_length = TYPE_LENGTH (TYPE_TARGET_TYPE (array_type));
1905+
1906+ if (call_count == 1)
1907+ {
1908+ /* When CALL_COUNT is equal to 1 we are working on the current range
1909+ and use these elements directly. */
1910+ element_type = TYPE_TARGET_TYPE (array_type);
1911+ }
1912+ else
1913+ {
1914+ /* Working on an array of arrays, the type of the elements is the type
1915+ of the subarrays' type. */
1916+ element_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (array_type));
1917+ }
1918+
1919+ slice_type = create_array_type (NULL, element_type, slice_range_type);
1920+
1921+ /* If we have a one dimensional array, we copy its TYPE_CODE. For a
1922+ multi dimensional array we copy the embedded type's TYPE_CODE. */
1923+ if (call_count == 1)
1924+ TYPE_CODE (slice_type) = TYPE_CODE (array_type);
1925+ else
1926+ TYPE_CODE (slice_type) = TYPE_CODE (TYPE_TARGET_TYPE (array_type));
1927+
1928+ v = allocate_value (slice_type);
1929+
1930+ /* Iterate through the rows of the outer array and set the new offset
1931+ for each row. */
1932+ for (i = 0; i < row_count; i++)
1933+ {
1934+ elt_offs = offs_store + i * src_row_length;
1935+
1936+ /* Iterate through the elements in each row to copy only those. */
1937+ for (j = 1; j <= elem_count; j++)
1938+ {
1939+ /* Fetches the contents of ARRAY and copies them into V. */
1940+ value_contents_copy (v, dst_offset, array, elt_offs, elt_size);
1941+ elt_offs += elt_size * stride_length;
1942+ dst_offset += elt_size;
1943+ }
1944+ }
1945 }
1946
1947- set_value_component_location (slice, array);
1948- set_value_offset (slice, value_offset (array) + offset);
1949+ set_value_component_location (v, array);
1950+ if (VALUE_LVAL (v) == lval_register)
1951+ {
1952+ VALUE_REGNUM (v) = VALUE_REGNUM (array);
1953+ VALUE_NEXT_FRAME_ID (v) = VALUE_NEXT_FRAME_ID (array);
1954+ }
1955+ set_value_offset (v, value_offset (array) + elt_offs);
1956 }
1957
1958- return slice;
1959+ return v;
1960 }
1961
1962 /* Create a value for a FORTRAN complex number. Currently most of the
1963Index: gdb-7.99.90.20170420/gdb/value.h
1964===================================================================
1965--- gdb-7.99.90.20170420.orig/gdb/value.h 2017-04-20 22:25:43.973254685 +0200
1966+++ gdb-7.99.90.20170420/gdb/value.h 2017-04-20 22:26:14.370446651 +0200
1967@@ -1106,6 +1106,8 @@
1968
1969 extern struct value *value_slice (struct value *, int, int);
1970
1971+extern struct value *value_slice_1 (struct value *, int, int, int, int);
1972+
1973 extern struct value *value_literal_complex (struct value *, struct value *,
1974 struct type *);
1975
This page took 0.349959 seconds and 4 git commands to generate.