]> git.pld-linux.org Git - packages/xen.git/commitdiff
- xz compression support from upstream prepared by archlinux
authorArkadiusz Miśkiewicz <arekm@maven.pl>
Sun, 27 Nov 2011 11:32:18 +0000 (11:32 +0000)
committercvs2git <feedback@pld-linux.org>
Sun, 24 Jun 2012 12:13:13 +0000 (12:13 +0000)
Changed files:
    xen-xz.patch -> 1.1
    xen.spec -> 1.91

xen-xz.patch [new file with mode: 0644]
xen.spec

diff --git a/xen-xz.patch b/xen-xz.patch
new file mode 100644 (file)
index 0000000..6e6ab95
--- /dev/null
@@ -0,0 +1,3528 @@
+diff --git a/xen/common/Makefile b/xen/common/Makefile
+--- a/xen/common/Makefile
++++ b/xen/common/Makefile
+@@ -43,7 +43,7 @@
+ obj-y += rbtree.o
+ obj-y += lzo.o
+-obj-$(CONFIG_X86) += decompress.o bunzip2.o unlzma.o unlzo.o
++obj-$(CONFIG_X86) += decompress.o bunzip2.o unxz.o unlzma.o unlzo.o
+ obj-$(perfc)       += perfc.o
+ obj-$(crash_debug) += gdbstub.o
+diff --git a/xen/common/decompress.c b/xen/common/decompress.c
+--- a/xen/common/decompress.c
++++ b/xen/common/decompress.c
+@@ -20,6 +20,9 @@
+     if ( len >= 3 && !memcmp(inbuf, "\x42\x5a\x68", 3) )
+         return bunzip2(inbuf, len, NULL, NULL, outbuf, NULL, error);
++    if ( len >= 6 && !memcmp(inbuf, "\3757zXZ", 6) )
++        return unxz(inbuf, len, NULL, NULL, outbuf, NULL, error);
++
+     if ( len >= 2 && !memcmp(inbuf, "\135\000", 2) )
+         return unlzma(inbuf, len, NULL, NULL, outbuf, NULL, error);
+diff --git a/xen/common/decompress.h b/xen/common/decompress.h
+--- a/xen/common/decompress.h
++++ b/xen/common/decompress.h
+@@ -8,6 +8,7 @@
+ #define STATIC
+ #define INIT __init
++#define INITDATA __initdata
+ static void(*__initdata error)(const char *);
+ #define set_error_fn(x) error = x;
+diff --git a/xen/common/unxz.c b/xen/common/unxz.c
+new file mode 100644
+--- /dev/null
++++ b/xen/common/unxz.c
+@@ -0,0 +1,306 @@
++/*
++ * Wrapper for decompressing XZ-compressed kernel, initramfs, and initrd
++ *
++ * Author: Lasse Collin <lasse.collin@tukaani.org>
++ *
++ * This file has been put into the public domain.
++ * You can do whatever you want with this file.
++ */
++
++/*
++ * Important notes about in-place decompression
++ *
++ * At least on x86, the kernel is decompressed in place: the compressed data
++ * is placed to the end of the output buffer, and the decompressor overwrites
++ * most of the compressed data. There must be enough safety margin to
++ * guarantee that the write position is always behind the read position.
++ *
++ * The safety margin for XZ with LZMA2 or BCJ+LZMA2 is calculated below.
++ * Note that the margin with XZ is bigger than with Deflate (gzip)!
++ *
++ * The worst case for in-place decompression is that the beginning of
++ * the file is compressed extremely well, and the rest of the file is
++ * uncompressible. Thus, we must look for worst-case expansion when the
++ * compressor is encoding uncompressible data.
++ *
++ * The structure of the .xz file in case of a compresed kernel is as follows.
++ * Sizes (as bytes) of the fields are in parenthesis.
++ *
++ *    Stream Header (12)
++ *    Block Header:
++ *      Block Header (8-12)
++ *      Compressed Data (N)
++ *      Block Padding (0-3)
++ *      CRC32 (4)
++ *    Index (8-20)
++ *    Stream Footer (12)
++ *
++ * Normally there is exactly one Block, but let's assume that there are
++ * 2-4 Blocks just in case. Because Stream Header and also Block Header
++ * of the first Block don't make the decompressor produce any uncompressed
++ * data, we can ignore them from our calculations. Block Headers of possible
++ * additional Blocks have to be taken into account still. With these
++ * assumptions, it is safe to assume that the total header overhead is
++ * less than 128 bytes.
++ *
++ * Compressed Data contains LZMA2 or BCJ+LZMA2 encoded data. Since BCJ
++ * doesn't change the size of the data, it is enough to calculate the
++ * safety margin for LZMA2.
++ *
++ * LZMA2 stores the data in chunks. Each chunk has a header whose size is
++ * a maximum of 6 bytes, but to get round 2^n numbers, let's assume that
++ * the maximum chunk header size is 8 bytes. After the chunk header, there
++ * may be up to 64 KiB of actual payload in the chunk. Often the payload is
++ * quite a bit smaller though; to be safe, let's assume that an average
++ * chunk has only 32 KiB of payload.
++ *
++ * The maximum uncompressed size of the payload is 2 MiB. The minimum
++ * uncompressed size of the payload is in practice never less than the
++ * payload size itself. The LZMA2 format would allow uncompressed size
++ * to be less than the payload size, but no sane compressor creates such
++ * files. LZMA2 supports storing uncompressible data in uncompressed form,
++ * so there's never a need to create payloads whose uncompressed size is
++ * smaller than the compressed size.
++ *
++ * The assumption, that the uncompressed size of the payload is never
++ * smaller than the payload itself, is valid only when talking about
++ * the payload as a whole. It is possible that the payload has parts where
++ * the decompressor consumes more input than it produces output. Calculating
++ * the worst case for this would be tricky. Instead of trying to do that,
++ * let's simply make sure that the decompressor never overwrites any bytes
++ * of the payload which it is currently reading.
++ *
++ * Now we have enough information to calculate the safety margin. We need
++ *   - 128 bytes for the .xz file format headers;
++ *   - 8 bytes per every 32 KiB of uncompressed size (one LZMA2 chunk header
++ *     per chunk, each chunk having average payload size of 32 KiB); and
++ *   - 64 KiB (biggest possible LZMA2 chunk payload size) to make sure that
++ *     the decompressor never overwrites anything from the LZMA2 chunk
++ *     payload it is currently reading.
++ *
++ * We get the following formula:
++ *
++ *    safety_margin = 128 + uncompressed_size * 8 / 32768 + 65536
++ *                  = 128 + (uncompressed_size >> 12) + 65536
++ *
++ * For comparision, according to arch/x86/boot/compressed/misc.c, the
++ * equivalent formula for Deflate is this:
++ *
++ *    safety_margin = 18 + (uncompressed_size >> 12) + 32768
++ *
++ * Thus, when updating Deflate-only in-place kernel decompressor to
++ * support XZ, the fixed overhead has to be increased from 18+32768 bytes
++ * to 128+65536 bytes.
++ */
++
++#include "decompress.h"
++
++#define XZ_EXTERN STATIC
++
++/*
++ * For boot time use, we enable only the BCJ filter of the current
++ * architecture or none if no BCJ filter is available for the architecture.
++ */
++#ifdef CONFIG_X86
++#     define XZ_DEC_X86
++#endif
++#ifdef CONFIG_PPC
++#     define XZ_DEC_POWERPC
++#endif
++#ifdef CONFIG_ARM
++#     define XZ_DEC_ARM
++#endif
++#ifdef CONFIG_IA64
++#     define XZ_DEC_IA64
++#endif
++#ifdef CONFIG_SPARC
++#     define XZ_DEC_SPARC
++#endif
++
++/*
++ * This will get the basic headers so that memeq() and others
++ * can be defined.
++ */
++#include "xz/private.h"
++
++/*
++ * memeq and memzero are not used much and any remotely sane implementation
++ * is fast enough. memcpy/memmove speed matters in multi-call mode, but
++ * the kernel image is decompressed in single-call mode, in which only
++ * memcpy speed can matter and only if there is a lot of uncompressible data
++ * (LZMA2 stores uncompressible chunks in uncompressed form). Thus, the
++ * functions below should just be kept small; it's probably not worth
++ * optimizing for speed.
++ */
++
++#ifndef memeq
++#define memeq(p1, p2, sz) (memcmp(p1, p2, sz) == 0)
++#endif
++
++#ifndef memzero
++#define memzero(p, sz) memset(p, 0, sz)
++#endif
++
++#include "xz/crc32.c"
++#include "xz/dec_stream.c"
++#include "xz/dec_lzma2.c"
++#include "xz/dec_bcj.c"
++
++/* Size of the input and output buffers in multi-call mode */
++#define XZ_IOBUF_SIZE 4096
++
++/*
++ * This function implements the API defined in <linux/decompress/generic.h>.
++ *
++ * This wrapper will automatically choose single-call or multi-call mode
++ * of the native XZ decoder API. The single-call mode can be used only when
++ * both input and output buffers are available as a single chunk, i.e. when
++ * fill() and flush() won't be used.
++ */
++STATIC int INIT unxz(unsigned char *in, unsigned int in_size,
++                   int (*fill)(void *dest, unsigned int size),
++                   int (*flush)(void *src, unsigned int size),
++                   unsigned char *out, unsigned int *in_used,
++                   void (*error_fn)(const char *x))
++{
++      struct xz_buf b;
++      struct xz_dec *s;
++      enum xz_ret ret;
++      bool_t must_free_in = false;
++
++      set_error_fn(error_fn);
++
++      xz_crc32_init();
++
++      if (in_used != NULL)
++              *in_used = 0;
++
++      if (fill == NULL && flush == NULL)
++              s = xz_dec_init(XZ_SINGLE, 0);
++      else
++              s = xz_dec_init(XZ_DYNALLOC, (uint32_t)-1);
++
++      if (s == NULL)
++              goto error_alloc_state;
++
++      if (flush == NULL) {
++              b.out = out;
++              b.out_size = (size_t)-1;
++      } else {
++              b.out_size = XZ_IOBUF_SIZE;
++              b.out = malloc(XZ_IOBUF_SIZE);
++              if (b.out == NULL)
++                      goto error_alloc_out;
++      }
++
++      if (in == NULL) {
++              must_free_in = true;
++              in = malloc(XZ_IOBUF_SIZE);
++              if (in == NULL)
++                      goto error_alloc_in;
++      }
++
++      b.in = in;
++      b.in_pos = 0;
++      b.in_size = in_size;
++      b.out_pos = 0;
++
++      if (fill == NULL && flush == NULL) {
++              ret = xz_dec_run(s, &b);
++      } else {
++              do {
++                      if (b.in_pos == b.in_size && fill != NULL) {
++                              if (in_used != NULL)
++                                      *in_used += b.in_pos;
++
++                              b.in_pos = 0;
++
++                              in_size = fill(in, XZ_IOBUF_SIZE);
++                              if (in_size < 0) {
++                                      /*
++                                       * This isn't an optimal error code
++                                       * but it probably isn't worth making
++                                       * a new one either.
++                                       */
++                                      ret = XZ_BUF_ERROR;
++                                      break;
++                              }
++
++                              b.in_size = in_size;
++                      }
++
++                      ret = xz_dec_run(s, &b);
++
++                      if (flush != NULL && (b.out_pos == b.out_size
++                                      || (ret != XZ_OK && b.out_pos > 0))) {
++                              /*
++                               * Setting ret here may hide an error
++                               * returned by xz_dec_run(), but probably
++                               * it's not too bad.
++                               */
++                              if (flush(b.out, b.out_pos) != (int)b.out_pos)
++                                      ret = XZ_BUF_ERROR;
++
++                              b.out_pos = 0;
++                      }
++              } while (ret == XZ_OK);
++
++              if (must_free_in)
++                      free(in);
++
++              if (flush != NULL)
++                      free(b.out);
++      }
++
++      if (in_used != NULL)
++              *in_used += b.in_pos;
++
++      xz_dec_end(s);
++
++      switch (ret) {
++      case XZ_STREAM_END:
++              return 0;
++
++      case XZ_MEM_ERROR:
++              /* This can occur only in multi-call mode. */
++              error("XZ decompressor ran out of memory");
++              break;
++
++      case XZ_FORMAT_ERROR:
++              error("Input is not in the XZ format (wrong magic bytes)");
++              break;
++
++      case XZ_OPTIONS_ERROR:
++              error("Input was encoded with settings that are not "
++                              "supported by this XZ decoder");
++              break;
++
++      case XZ_DATA_ERROR:
++      case XZ_BUF_ERROR:
++              error("XZ-compressed data is corrupt");
++              break;
++
++      default:
++              error("Bug in the XZ decompressor");
++              break;
++      }
++
++      return -1;
++
++error_alloc_in:
++      if (flush != NULL)
++              free(b.out);
++
++error_alloc_out:
++      xz_dec_end(s);
++
++error_alloc_state:
++      error("XZ decompressor ran out of memory");
++      return -1;
++}
++
++/*
++ * This macro is used by architecture-specific files to decompress
++ * the kernel image.
++ */
++#define decompress unxz
+diff --git a/xen/common/xz/crc32.c b/xen/common/xz/crc32.c
+new file mode 100644
+--- /dev/null
++++ b/xen/common/xz/crc32.c
+@@ -0,0 +1,51 @@
++/*
++ * CRC32 using the polynomial from IEEE-802.3
++ *
++ * Authors: Lasse Collin <lasse.collin@tukaani.org>
++ *          Igor Pavlov <http://7-zip.org/>
++ *
++ * This file has been put into the public domain.
++ * You can do whatever you want with this file.
++ */
++
++/*
++ * This is not the fastest implementation, but it is pretty compact.
++ * The fastest versions of xz_crc32() on modern CPUs without hardware
++ * accelerated CRC instruction are 3-5 times as fast as this version,
++ * but they are bigger and use more memory for the lookup table.
++ */
++
++#include "private.h"
++
++XZ_EXTERN uint32_t INITDATA xz_crc32_table[256];
++
++XZ_EXTERN void INIT xz_crc32_init(void)
++{
++      const uint32_t poly = 0xEDB88320;
++
++      uint32_t i;
++      uint32_t j;
++      uint32_t r;
++
++      for (i = 0; i < 256; ++i) {
++              r = i;
++              for (j = 0; j < 8; ++j)
++                      r = (r >> 1) ^ (poly & ~((r & 1) - 1));
++
++              xz_crc32_table[i] = r;
++      }
++
++      return;
++}
++
++XZ_EXTERN uint32_t INIT xz_crc32(const uint8_t *buf, size_t size, uint32_t crc)
++{
++      crc = ~crc;
++
++      while (size != 0) {
++              crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
++              --size;
++      }
++
++      return ~crc;
++}
+diff --git a/xen/common/xz/dec_bcj.c b/xen/common/xz/dec_bcj.c
+new file mode 100644
+--- /dev/null
++++ b/xen/common/xz/dec_bcj.c
+@@ -0,0 +1,562 @@
++/*
++ * Branch/Call/Jump (BCJ) filter decoders
++ *
++ * Authors: Lasse Collin <lasse.collin@tukaani.org>
++ *          Igor Pavlov <http://7-zip.org/>
++ *
++ * This file has been put into the public domain.
++ * You can do whatever you want with this file.
++ */
++
++#include "private.h"
++
++/*
++ * The rest of the file is inside this ifdef. It makes things a little more
++ * convenient when building without support for any BCJ filters.
++ */
++#ifdef XZ_DEC_BCJ
++
++struct xz_dec_bcj {
++      /* Type of the BCJ filter being used */
++      enum {
++              BCJ_X86 = 4,        /* x86 or x86-64 */
++              BCJ_POWERPC = 5,    /* Big endian only */
++              BCJ_IA64 = 6,       /* Big or little endian */
++              BCJ_ARM = 7,        /* Little endian only */
++              BCJ_ARMTHUMB = 8,   /* Little endian only */
++              BCJ_SPARC = 9       /* Big or little endian */
++      } type;
++
++      /*
++       * Return value of the next filter in the chain. We need to preserve
++       * this information across calls, because we must not call the next
++       * filter anymore once it has returned XZ_STREAM_END.
++       */
++      enum xz_ret ret;
++
++      /* True if we are operating in single-call mode. */
++      bool_t single_call;
++
++      /*
++       * Absolute position relative to the beginning of the uncompressed
++       * data (in a single .xz Block). We care only about the lowest 32
++       * bits so this doesn't need to be uint64_t even with big files.
++       */
++      uint32_t pos;
++
++      /* x86 filter state */
++      uint32_t x86_prev_mask;
++
++      /* Temporary space to hold the variables from struct xz_buf */
++      uint8_t *out;
++      size_t out_pos;
++      size_t out_size;
++
++      struct {
++              /* Amount of already filtered data in the beginning of buf */
++              size_t filtered;
++
++              /* Total amount of data currently stored in buf  */
++              size_t size;
++
++              /*
++               * Buffer to hold a mix of filtered and unfiltered data. This
++               * needs to be big enough to hold Alignment + 2 * Look-ahead:
++               *
++               * Type         Alignment   Look-ahead
++               * x86              1           4
++               * PowerPC          4           0
++               * IA-64           16           0
++               * ARM              4           0
++               * ARM-Thumb        2           2
++               * SPARC            4           0
++               */
++              uint8_t buf[16];
++      } temp;
++};
++
++#ifdef XZ_DEC_X86
++/*
++ * This is used to test the most significant byte of a memory address
++ * in an x86 instruction.
++ */
++static inline int INIT bcj_x86_test_msbyte(uint8_t b)
++{
++      return b == 0x00 || b == 0xFF;
++}
++
++static size_t INIT bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
++{
++      static /*const*/ bool_t INITDATA mask_to_allowed_status[8]
++              = { true, true, true, false, true, false, false, false };
++
++      static /*const*/ uint8_t INITDATA mask_to_bit_num[8]
++              = { 0, 1, 2, 2, 3, 3, 3, 3 };
++
++      size_t i;
++      size_t prev_pos = (size_t)-1;
++      uint32_t prev_mask = s->x86_prev_mask;
++      uint32_t src;
++      uint32_t dest;
++      uint32_t j;
++      uint8_t b;
++
++      if (size <= 4)
++              return 0;
++
++      size -= 4;
++      for (i = 0; i < size; ++i) {
++              if ((buf[i] & 0xFE) != 0xE8)
++                      continue;
++
++              prev_pos = i - prev_pos;
++              if (prev_pos > 3) {
++                      prev_mask = 0;
++              } else {
++                      prev_mask = (prev_mask << (prev_pos - 1)) & 7;
++                      if (prev_mask != 0) {
++                              b = buf[i + 4 - mask_to_bit_num[prev_mask]];
++                              if (!mask_to_allowed_status[prev_mask]
++                                              || bcj_x86_test_msbyte(b)) {
++                                      prev_pos = i;
++                                      prev_mask = (prev_mask << 1) | 1;
++                                      continue;
++                              }
++                      }
++              }
++
++              prev_pos = i;
++
++              if (bcj_x86_test_msbyte(buf[i + 4])) {
++                      src = get_unaligned_le32(buf + i + 1);
++                      while (true) {
++                              dest = src - (s->pos + (uint32_t)i + 5);
++                              if (prev_mask == 0)
++                                      break;
++
++                              j = mask_to_bit_num[prev_mask] * 8;
++                              b = (uint8_t)(dest >> (24 - j));
++                              if (!bcj_x86_test_msbyte(b))
++                                      break;
++
++                              src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
++                      }
++
++                      dest &= 0x01FFFFFF;
++                      dest |= (uint32_t)0 - (dest & 0x01000000);
++                      put_unaligned_le32(dest, buf + i + 1);
++                      i += 4;
++              } else {
++                      prev_mask = (prev_mask << 1) | 1;
++              }
++      }
++
++      prev_pos = i - prev_pos;
++      s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
++      return i;
++}
++#endif
++
++#ifdef XZ_DEC_POWERPC
++static size_t INIT bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
++{
++      size_t i;
++      uint32_t instr;
++
++      for (i = 0; i + 4 <= size; i += 4) {
++              instr = get_unaligned_be32(buf + i);
++              if ((instr & 0xFC000003) == 0x48000001) {
++                      instr &= 0x03FFFFFC;
++                      instr -= s->pos + (uint32_t)i;
++                      instr &= 0x03FFFFFC;
++                      instr |= 0x48000001;
++                      put_unaligned_be32(instr, buf + i);
++              }
++      }
++
++      return i;
++}
++#endif
++
++#ifdef XZ_DEC_IA64
++static size_t INIT bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
++{
++      static const uint8_t branch_table[32] = {
++              0, 0, 0, 0, 0, 0, 0, 0,
++              0, 0, 0, 0, 0, 0, 0, 0,
++              4, 4, 6, 6, 0, 0, 7, 7,
++              4, 4, 0, 0, 4, 4, 0, 0
++      };
++
++      /*
++       * The local variables take a little bit stack space, but it's less
++       * than what LZMA2 decoder takes, so it doesn't make sense to reduce
++       * stack usage here without doing that for the LZMA2 decoder too.
++       */
++
++      /* Loop counters */
++      size_t i;
++      size_t j;
++
++      /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
++      uint32_t slot;
++
++      /* Bitwise offset of the instruction indicated by slot */
++      uint32_t bit_pos;
++
++      /* bit_pos split into byte and bit parts */
++      uint32_t byte_pos;
++      uint32_t bit_res;
++
++      /* Address part of an instruction */
++      uint32_t addr;
++
++      /* Mask used to detect which instructions to convert */
++      uint32_t mask;
++
++      /* 41-bit instruction stored somewhere in the lowest 48 bits */
++      uint64_t instr;
++
++      /* Instruction normalized with bit_res for easier manipulation */
++      uint64_t norm;
++
++      for (i = 0; i + 16 <= size; i += 16) {
++              mask = branch_table[buf[i] & 0x1F];
++              for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
++                      if (((mask >> slot) & 1) == 0)
++                              continue;
++
++                      byte_pos = bit_pos >> 3;
++                      bit_res = bit_pos & 7;
++                      instr = 0;
++                      for (j = 0; j < 6; ++j)
++                              instr |= (uint64_t)(buf[i + j + byte_pos])
++                                              << (8 * j);
++
++                      norm = instr >> bit_res;
++
++                      if (((norm >> 37) & 0x0F) == 0x05
++                                      && ((norm >> 9) & 0x07) == 0) {
++                              addr = (norm >> 13) & 0x0FFFFF;
++                              addr |= ((uint32_t)(norm >> 36) & 1) << 20;
++                              addr <<= 4;
++                              addr -= s->pos + (uint32_t)i;
++                              addr >>= 4;
++
++                              norm &= ~((uint64_t)0x8FFFFF << 13);
++                              norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
++                              norm |= (uint64_t)(addr & 0x100000)
++                                              << (36 - 20);
++
++                              instr &= (1 << bit_res) - 1;
++                              instr |= norm << bit_res;
++
++                              for (j = 0; j < 6; j++)
++                                      buf[i + j + byte_pos]
++                                              = (uint8_t)(instr >> (8 * j));
++                      }
++              }
++      }
++
++      return i;
++}
++#endif
++
++#ifdef XZ_DEC_ARM
++static size_t INIT bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
++{
++      size_t i;
++      uint32_t addr;
++
++      for (i = 0; i + 4 <= size; i += 4) {
++              if (buf[i + 3] == 0xEB) {
++                      addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
++                                      | ((uint32_t)buf[i + 2] << 16);
++                      addr <<= 2;
++                      addr -= s->pos + (uint32_t)i + 8;
++                      addr >>= 2;
++                      buf[i] = (uint8_t)addr;
++                      buf[i + 1] = (uint8_t)(addr >> 8);
++                      buf[i + 2] = (uint8_t)(addr >> 16);
++              }
++      }
++
++      return i;
++}
++#endif
++
++#ifdef XZ_DEC_ARMTHUMB
++static size_t INIT bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
++{
++      size_t i;
++      uint32_t addr;
++
++      for (i = 0; i + 4 <= size; i += 2) {
++              if ((buf[i + 1] & 0xF8) == 0xF0
++                              && (buf[i + 3] & 0xF8) == 0xF8) {
++                      addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
++                                      | ((uint32_t)buf[i] << 11)
++                                      | (((uint32_t)buf[i + 3] & 0x07) << 8)
++                                      | (uint32_t)buf[i + 2];
++                      addr <<= 1;
++                      addr -= s->pos + (uint32_t)i + 4;
++                      addr >>= 1;
++                      buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
++                      buf[i] = (uint8_t)(addr >> 11);
++                      buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
++                      buf[i + 2] = (uint8_t)addr;
++                      i += 2;
++              }
++      }
++
++      return i;
++}
++#endif
++
++#ifdef XZ_DEC_SPARC
++static size_t INIT bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
++{
++      size_t i;
++      uint32_t instr;
++
++      for (i = 0; i + 4 <= size; i += 4) {
++              instr = get_unaligned_be32(buf + i);
++              if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
++                      instr <<= 2;
++                      instr -= s->pos + (uint32_t)i;
++                      instr >>= 2;
++                      instr = ((uint32_t)0x40000000 - (instr & 0x400000))
++                                      | 0x40000000 | (instr & 0x3FFFFF);
++                      put_unaligned_be32(instr, buf + i);
++              }
++      }
++
++      return i;
++}
++#endif
++
++/*
++ * Apply the selected BCJ filter. Update *pos and s->pos to match the amount
++ * of data that got filtered.
++ *
++ * NOTE: This is implemented as a switch statement to avoid using function
++ * pointers, which could be problematic in the kernel boot code, which must
++ * avoid pointers to static data (at least on x86).
++ */
++static void INIT bcj_apply(struct xz_dec_bcj *s,
++                         uint8_t *buf, size_t *pos, size_t size)
++{
++      size_t filtered;
++
++      buf += *pos;
++      size -= *pos;
++
++      switch (s->type) {
++#ifdef XZ_DEC_X86
++      case BCJ_X86:
++              filtered = bcj_x86(s, buf, size);
++              break;
++#endif
++#ifdef XZ_DEC_POWERPC
++      case BCJ_POWERPC:
++              filtered = bcj_powerpc(s, buf, size);
++              break;
++#endif
++#ifdef XZ_DEC_IA64
++      case BCJ_IA64:
++              filtered = bcj_ia64(s, buf, size);
++              break;
++#endif
++#ifdef XZ_DEC_ARM
++      case BCJ_ARM:
++              filtered = bcj_arm(s, buf, size);
++              break;
++#endif
++#ifdef XZ_DEC_ARMTHUMB
++      case BCJ_ARMTHUMB:
++              filtered = bcj_armthumb(s, buf, size);
++              break;
++#endif
++#ifdef XZ_DEC_SPARC
++      case BCJ_SPARC:
++              filtered = bcj_sparc(s, buf, size);
++              break;
++#endif
++      default:
++              /* Never reached but silence compiler warnings. */
++              filtered = 0;
++              break;
++      }
++
++      *pos += filtered;
++      s->pos += filtered;
++}
++
++/*
++ * Flush pending filtered data from temp to the output buffer.
++ * Move the remaining mixture of possibly filtered and unfiltered
++ * data to the beginning of temp.
++ */
++static void INIT bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
++{
++      size_t copy_size;
++
++      copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
++      memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
++      b->out_pos += copy_size;
++
++      s->temp.filtered -= copy_size;
++      s->temp.size -= copy_size;
++      memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
++}
++
++/*
++ * The BCJ filter functions are primitive in sense that they process the
++ * data in chunks of 1-16 bytes. To hide this issue, this function does
++ * some buffering.
++ */
++XZ_EXTERN enum xz_ret INIT xz_dec_bcj_run(struct xz_dec_bcj *s,
++                                        struct xz_dec_lzma2 *lzma2,
++                                        struct xz_buf *b)
++{
++      size_t out_start;
++
++      /*
++       * Flush pending already filtered data to the output buffer. Return
++       * immediatelly if we couldn't flush everything, or if the next
++       * filter in the chain had already returned XZ_STREAM_END.
++       */
++      if (s->temp.filtered > 0) {
++              bcj_flush(s, b);
++              if (s->temp.filtered > 0)
++                      return XZ_OK;
++
++              if (s->ret == XZ_STREAM_END)
++                      return XZ_STREAM_END;
++      }
++
++      /*
++       * If we have more output space than what is currently pending in
++       * temp, copy the unfiltered data from temp to the output buffer
++       * and try to fill the output buffer by decoding more data from the
++       * next filter in the chain. Apply the BCJ filter on the new data
++       * in the output buffer. If everything cannot be filtered, copy it
++       * to temp and rewind the output buffer position accordingly.
++       */
++      if (s->temp.size < b->out_size - b->out_pos) {
++              out_start = b->out_pos;
++              memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
++              b->out_pos += s->temp.size;
++
++              s->ret = xz_dec_lzma2_run(lzma2, b);
++              if (s->ret != XZ_STREAM_END
++                              && (s->ret != XZ_OK || s->single_call))
++                      return s->ret;
++
++              bcj_apply(s, b->out, &out_start, b->out_pos);
++
++              /*
++               * As an exception, if the next filter returned XZ_STREAM_END,
++               * we can do that too, since the last few bytes that remain
++               * unfiltered are meant to remain unfiltered.
++               */
++              if (s->ret == XZ_STREAM_END)
++                      return XZ_STREAM_END;
++
++              s->temp.size = b->out_pos - out_start;
++              b->out_pos -= s->temp.size;
++              memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
++      }
++
++      /*
++       * If we have unfiltered data in temp, try to fill by decoding more
++       * data from the next filter. Apply the BCJ filter on temp. Then we
++       * hopefully can fill the actual output buffer by copying filtered
++       * data from temp. A mix of filtered and unfiltered data may be left
++       * in temp; it will be taken care on the next call to this function.
++       */
++      if (s->temp.size > 0) {
++              /* Make b->out{,_pos,_size} temporarily point to s->temp. */
++              s->out = b->out;
++              s->out_pos = b->out_pos;
++              s->out_size = b->out_size;
++              b->out = s->temp.buf;
++              b->out_pos = s->temp.size;
++              b->out_size = sizeof(s->temp.buf);
++
++              s->ret = xz_dec_lzma2_run(lzma2, b);
++
++              s->temp.size = b->out_pos;
++              b->out = s->out;
++              b->out_pos = s->out_pos;
++              b->out_size = s->out_size;
++
++              if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
++                      return s->ret;
++
++              bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
++
++              /*
++               * If the next filter returned XZ_STREAM_END, we mark that
++               * everything is filtered, since the last unfiltered bytes
++               * of the stream are meant to be left as is.
++               */
++              if (s->ret == XZ_STREAM_END)
++                      s->temp.filtered = s->temp.size;
++
++              bcj_flush(s, b);
++              if (s->temp.filtered > 0)
++                      return XZ_OK;
++      }
++
++      return s->ret;
++}
++
++XZ_EXTERN struct xz_dec_bcj *INIT xz_dec_bcj_create(bool_t single_call)
++{
++      struct xz_dec_bcj *s = malloc(sizeof(*s));
++      if (s != NULL)
++              s->single_call = single_call;
++
++      return s;
++}
++
++XZ_EXTERN enum xz_ret INIT xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id)
++{
++      switch (id) {
++#ifdef XZ_DEC_X86
++      case BCJ_X86:
++#endif
++#ifdef XZ_DEC_POWERPC
++      case BCJ_POWERPC:
++#endif
++#ifdef XZ_DEC_IA64
++      case BCJ_IA64:
++#endif
++#ifdef XZ_DEC_ARM
++      case BCJ_ARM:
++#endif
++#ifdef XZ_DEC_ARMTHUMB
++      case BCJ_ARMTHUMB:
++#endif
++#ifdef XZ_DEC_SPARC
++      case BCJ_SPARC:
++#endif
++              break;
++
++      default:
++              /* Unsupported Filter ID */
++              return XZ_OPTIONS_ERROR;
++      }
++
++      s->type = id;
++      s->ret = XZ_OK;
++      s->pos = 0;
++      s->x86_prev_mask = 0;
++      s->temp.filtered = 0;
++      s->temp.size = 0;
++
++      return XZ_OK;
++}
++
++#endif
+diff --git a/xen/common/xz/dec_lzma2.c b/xen/common/xz/dec_lzma2.c
+new file mode 100644
+--- /dev/null
++++ b/xen/common/xz/dec_lzma2.c
+@@ -0,0 +1,1171 @@
++/*
++ * LZMA2 decoder
++ *
++ * Authors: Lasse Collin <lasse.collin@tukaani.org>
++ *          Igor Pavlov <http://7-zip.org/>
++ *
++ * This file has been put into the public domain.
++ * You can do whatever you want with this file.
++ */
++
++#include "private.h"
++#include "lzma2.h"
++
++/*
++ * Range decoder initialization eats the first five bytes of each LZMA chunk.
++ */
++#define RC_INIT_BYTES 5
++
++/*
++ * Minimum number of usable input buffer to safely decode one LZMA symbol.
++ * The worst case is that we decode 22 bits using probabilities and 26
++ * direct bits. This may decode at maximum of 20 bytes of input. However,
++ * lzma_main() does an extra normalization before returning, thus we
++ * need to put 21 here.
++ */
++#define LZMA_IN_REQUIRED 21
++
++/*
++ * Dictionary (history buffer)
++ *
++ * These are always true:
++ *    start <= pos <= full <= end
++ *    pos <= limit <= end
++ *
++ * In multi-call mode, also these are true:
++ *    end == size
++ *    size <= size_max
++ *    allocated <= size
++ *
++ * Most of these variables are size_t to support single-call mode,
++ * in which the dictionary variables address the actual output
++ * buffer directly.
++ */
++struct dictionary {
++      /* Beginning of the history buffer */
++      uint8_t *buf;
++
++      /* Old position in buf (before decoding more data) */
++      size_t start;
++
++      /* Position in buf */
++      size_t pos;
++
++      /*
++       * How full dictionary is. This is used to detect corrupt input that
++       * would read beyond the beginning of the uncompressed stream.
++       */
++      size_t full;
++
++      /* Write limit; we don't write to buf[limit] or later bytes. */
++      size_t limit;
++
++      /*
++       * End of the dictionary buffer. In multi-call mode, this is
++       * the same as the dictionary size. In single-call mode, this
++       * indicates the size of the output buffer.
++       */
++      size_t end;
++
++      /*
++       * Size of the dictionary as specified in Block Header. This is used
++       * together with "full" to detect corrupt input that would make us
++       * read beyond the beginning of the uncompressed stream.
++       */
++      uint32_t size;
++
++      /*
++       * Maximum allowed dictionary size in multi-call mode.
++       * This is ignored in single-call mode.
++       */
++      uint32_t size_max;
++
++      /*
++       * Amount of memory currently allocated for the dictionary.
++       * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
++       * size_max is always the same as the allocated size.)
++       */
++      uint32_t allocated;
++
++      /* Operation mode */
++      enum xz_mode mode;
++};
++
++/* Range decoder */
++struct rc_dec {
++      uint32_t range;
++      uint32_t code;
++
++      /*
++       * Number of initializing bytes remaining to be read
++       * by rc_read_init().
++       */
++      uint32_t init_bytes_left;
++
++      /*
++       * Buffer from which we read our input. It can be either
++       * temp.buf or the caller-provided input buffer.
++       */
++      const uint8_t *in;
++      size_t in_pos;
++      size_t in_limit;
++};
++
++/* Probabilities for a length decoder. */
++struct lzma_len_dec {
++      /* Probability of match length being at least 10 */
++      uint16_t choice;
++
++      /* Probability of match length being at least 18 */
++      uint16_t choice2;
++
++      /* Probabilities for match lengths 2-9 */
++      uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
++
++      /* Probabilities for match lengths 10-17 */
++      uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
++
++      /* Probabilities for match lengths 18-273 */
++      uint16_t high[LEN_HIGH_SYMBOLS];
++};
++
++struct lzma_dec {
++      /* Distances of latest four matches */
++      uint32_t rep0;
++      uint32_t rep1;
++      uint32_t rep2;
++      uint32_t rep3;
++
++      /* Types of the most recently seen LZMA symbols */
++      enum lzma_state state;
++
++      /*
++       * Length of a match. This is updated so that dict_repeat can
++       * be called again to finish repeating the whole match.
++       */
++      uint32_t len;
++
++      /*
++       * LZMA properties or related bit masks (number of literal
++       * context bits, a mask dervied from the number of literal
++       * position bits, and a mask dervied from the number
++       * position bits)
++       */
++      uint32_t lc;
++      uint32_t literal_pos_mask; /* (1 << lp) - 1 */
++      uint32_t pos_mask;         /* (1 << pb) - 1 */
++
++      /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
++      uint16_t is_match[STATES][POS_STATES_MAX];
++
++      /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
++      uint16_t is_rep[STATES];
++
++      /*
++       * If 0, distance of a repeated match is rep0.
++       * Otherwise check is_rep1.
++       */
++      uint16_t is_rep0[STATES];
++
++      /*
++       * If 0, distance of a repeated match is rep1.
++       * Otherwise check is_rep2.
++       */
++      uint16_t is_rep1[STATES];
++
++      /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
++      uint16_t is_rep2[STATES];
++
++      /*
++       * If 1, the repeated match has length of one byte. Otherwise
++       * the length is decoded from rep_len_decoder.
++       */
++      uint16_t is_rep0_long[STATES][POS_STATES_MAX];
++
++      /*
++       * Probability tree for the highest two bits of the match
++       * distance. There is a separate probability tree for match
++       * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
++       */
++      uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
++
++      /*
++       * Probility trees for additional bits for match distance
++       * when the distance is in the range [4, 127].
++       */
++      uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
++
++      /*
++       * Probability tree for the lowest four bits of a match
++       * distance that is equal to or greater than 128.
++       */
++      uint16_t dist_align[ALIGN_SIZE];
++
++      /* Length of a normal match */
++      struct lzma_len_dec match_len_dec;
++
++      /* Length of a repeated match */
++      struct lzma_len_dec rep_len_dec;
++
++      /* Probabilities of literals */
++      uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
++};
++
++struct lzma2_dec {
++      /* Position in xz_dec_lzma2_run(). */
++      enum lzma2_seq {
++              SEQ_CONTROL,
++              SEQ_UNCOMPRESSED_1,
++              SEQ_UNCOMPRESSED_2,
++              SEQ_COMPRESSED_0,
++              SEQ_COMPRESSED_1,
++              SEQ_PROPERTIES,
++              SEQ_LZMA_PREPARE,
++              SEQ_LZMA_RUN,
++              SEQ_COPY
++      } sequence;
++
++      /* Next position after decoding the compressed size of the chunk. */
++      enum lzma2_seq next_sequence;
++
++      /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
++      uint32_t uncompressed;
++
++      /*
++       * Compressed size of LZMA chunk or compressed/uncompressed
++       * size of uncompressed chunk (64 KiB at maximum)
++       */
++      uint32_t compressed;
++
++      /*
++       * True if dictionary reset is needed. This is false before
++       * the first chunk (LZMA or uncompressed).
++       */
++      bool_t need_dict_reset;
++
++      /*
++       * True if new LZMA properties are needed. This is false
++       * before the first LZMA chunk.
++       */
++      bool_t need_props;
++};
++
++struct xz_dec_lzma2 {
++      /*
++       * The order below is important on x86 to reduce code size and
++       * it shouldn't hurt on other platforms. Everything up to and
++       * including lzma.pos_mask are in the first 128 bytes on x86-32,
++       * which allows using smaller instructions to access those
++       * variables. On x86-64, fewer variables fit into the first 128
++       * bytes, but this is still the best order without sacrificing
++       * the readability by splitting the structures.
++       */
++      struct rc_dec rc;
++      struct dictionary dict;
++      struct lzma2_dec lzma2;
++      struct lzma_dec lzma;
++
++      /*
++       * Temporary buffer which holds small number of input bytes between
++       * decoder calls. See lzma2_lzma() for details.
++       */
++      struct {
++              uint32_t size;
++              uint8_t buf[3 * LZMA_IN_REQUIRED];
++      } temp;
++};
++
++/**************
++ * Dictionary *
++ **************/
++
++/*
++ * Reset the dictionary state. When in single-call mode, set up the beginning
++ * of the dictionary to point to the actual output buffer.
++ */
++static void INIT dict_reset(struct dictionary *dict, struct xz_buf *b)
++{
++      if (DEC_IS_SINGLE(dict->mode)) {
++              dict->buf = b->out + b->out_pos;
++              dict->end = b->out_size - b->out_pos;
++      }
++
++      dict->start = 0;
++      dict->pos = 0;
++      dict->limit = 0;
++      dict->full = 0;
++}
++
++/* Set dictionary write limit */
++static void INIT dict_limit(struct dictionary *dict, size_t out_max)
++{
++      if (dict->end - dict->pos <= out_max)
++              dict->limit = dict->end;
++      else
++              dict->limit = dict->pos + out_max;
++}
++
++/* Return true if at least one byte can be written into the dictionary. */
++static inline bool_t INIT dict_has_space(const struct dictionary *dict)
++{
++      return dict->pos < dict->limit;
++}
++
++/*
++ * Get a byte from the dictionary at the given distance. The distance is
++ * assumed to valid, or as a special case, zero when the dictionary is
++ * still empty. This special case is needed for single-call decoding to
++ * avoid writing a '\0' to the end of the destination buffer.
++ */
++static inline uint32_t INIT dict_get(const struct dictionary *dict, uint32_t dist)
++{
++      size_t offset = dict->pos - dist - 1;
++
++      if (dist >= dict->pos)
++              offset += dict->end;
++
++      return dict->full > 0 ? dict->buf[offset] : 0;
++}
++
++/*
++ * Put one byte into the dictionary. It is assumed that there is space for it.
++ */
++static inline void INIT dict_put(struct dictionary *dict, uint8_t byte)
++{
++      dict->buf[dict->pos++] = byte;
++
++      if (dict->full < dict->pos)
++              dict->full = dict->pos;
++}
++
++/*
++ * Repeat given number of bytes from the given distance. If the distance is
++ * invalid, false is returned. On success, true is returned and *len is
++ * updated to indicate how many bytes were left to be repeated.
++ */
++static bool_t INIT dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
++{
++      size_t back;
++      uint32_t left;
++
++      if (dist >= dict->full || dist >= dict->size)
++              return false;
++
++      left = min_t(size_t, dict->limit - dict->pos, *len);
++      *len -= left;
++
++      back = dict->pos - dist - 1;
++      if (dist >= dict->pos)
++              back += dict->end;
++
++      do {
++              dict->buf[dict->pos++] = dict->buf[back++];
++              if (back == dict->end)
++                      back = 0;
++      } while (--left > 0);
++
++      if (dict->full < dict->pos)
++              dict->full = dict->pos;
++
++      return true;
++}
++
++/* Copy uncompressed data as is from input to dictionary and output buffers. */
++static void INIT dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
++                                 uint32_t *left)
++{
++      size_t copy_size;
++
++      while (*left > 0 && b->in_pos < b->in_size
++                      && b->out_pos < b->out_size) {
++              copy_size = min(b->in_size - b->in_pos,
++                              b->out_size - b->out_pos);
++              if (copy_size > dict->end - dict->pos)
++                      copy_size = dict->end - dict->pos;
++              if (copy_size > *left)
++                      copy_size = *left;
++
++              *left -= copy_size;
++
++              memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
++              dict->pos += copy_size;
++
++              if (dict->full < dict->pos)
++                      dict->full = dict->pos;
++
++              if (DEC_IS_MULTI(dict->mode)) {
++                      if (dict->pos == dict->end)
++                              dict->pos = 0;
++
++                      memcpy(b->out + b->out_pos, b->in + b->in_pos,
++                                      copy_size);
++              }
++
++              dict->start = dict->pos;
++
++              b->out_pos += copy_size;
++              b->in_pos += copy_size;
++      }
++}
++
++/*
++ * Flush pending data from dictionary to b->out. It is assumed that there is
++ * enough space in b->out. This is guaranteed because caller uses dict_limit()
++ * before decoding data into the dictionary.
++ */
++static uint32_t INIT dict_flush(struct dictionary *dict, struct xz_buf *b)
++{
++      size_t copy_size = dict->pos - dict->start;
++
++      if (DEC_IS_MULTI(dict->mode)) {
++              if (dict->pos == dict->end)
++                      dict->pos = 0;
++
++              memcpy(b->out + b->out_pos, dict->buf + dict->start,
++                              copy_size);
++      }
++
++      dict->start = dict->pos;
++      b->out_pos += copy_size;
++      return copy_size;
++}
++
++/*****************
++ * Range decoder *
++ *****************/
++
++/* Reset the range decoder. */
++static void INIT rc_reset(struct rc_dec *rc)
++{
++      rc->range = (uint32_t)-1;
++      rc->code = 0;
++      rc->init_bytes_left = RC_INIT_BYTES;
++}
++
++/*
++ * Read the first five initial bytes into rc->code if they haven't been
++ * read already. (Yes, the first byte gets completely ignored.)
++ */
++static bool_t INIT rc_read_init(struct rc_dec *rc, struct xz_buf *b)
++{
++      while (rc->init_bytes_left > 0) {
++              if (b->in_pos == b->in_size)
++                      return false;
++
++              rc->code = (rc->code << 8) + b->in[b->in_pos++];
++              --rc->init_bytes_left;
++      }
++
++      return true;
++}
++
++/* Return true if there may not be enough input for the next decoding loop. */
++static inline bool_t INIT rc_limit_exceeded(const struct rc_dec *rc)
++{
++      return rc->in_pos > rc->in_limit;
++}
++
++/*
++ * Return true if it is possible (from point of view of range decoder) that
++ * we have reached the end of the LZMA chunk.
++ */
++static inline bool_t INIT rc_is_finished(const struct rc_dec *rc)
++{
++      return rc->code == 0;
++}
++
++/* Read the next input byte if needed. */
++static always_inline void rc_normalize(struct rc_dec *rc)
++{
++      if (rc->range < RC_TOP_VALUE) {
++              rc->range <<= RC_SHIFT_BITS;
++              rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
++      }
++}
++
++/*
++ * Decode one bit. In some versions, this function has been splitted in three
++ * functions so that the compiler is supposed to be able to more easily avoid
++ * an extra branch. In this particular version of the LZMA decoder, this
++ * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
++ * on x86). Using a non-splitted version results in nicer looking code too.
++ *
++ * NOTE: This must return an int. Do not make it return a bool or the speed
++ * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
++ * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
++ */
++static always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
++{
++      uint32_t bound;
++      int bit;
++
++      rc_normalize(rc);
++      bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
++      if (rc->code < bound) {
++              rc->range = bound;
++              *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
++              bit = 0;
++      } else {
++              rc->range -= bound;
++              rc->code -= bound;
++              *prob -= *prob >> RC_MOVE_BITS;
++              bit = 1;
++      }
++
++      return bit;
++}
++
++/* Decode a bittree starting from the most significant bit. */
++static always_inline uint32_t rc_bittree(struct rc_dec *rc,
++                                       uint16_t *probs, uint32_t limit)
++{
++      uint32_t symbol = 1;
++
++      do {
++              if (rc_bit(rc, &probs[symbol]))
++                      symbol = (symbol << 1) + 1;
++              else
++                      symbol <<= 1;
++      } while (symbol < limit);
++
++      return symbol;
++}
++
++/* Decode a bittree starting from the least significant bit. */
++static always_inline void rc_bittree_reverse(struct rc_dec *rc,
++                                           uint16_t *probs,
++                                           uint32_t *dest, uint32_t limit)
++{
++      uint32_t symbol = 1;
++      uint32_t i = 0;
++
++      do {
++              if (rc_bit(rc, &probs[symbol])) {
++                      symbol = (symbol << 1) + 1;
++                      *dest += 1 << i;
++              } else {
++                      symbol <<= 1;
++              }
++      } while (++i < limit);
++}
++
++/* Decode direct bits (fixed fifty-fifty probability) */
++static inline void INIT rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
++{
++      uint32_t mask;
++
++      do {
++              rc_normalize(rc);
++              rc->range >>= 1;
++              rc->code -= rc->range;
++              mask = (uint32_t)0 - (rc->code >> 31);
++              rc->code += rc->range & mask;
++              *dest = (*dest << 1) + (mask + 1);
++      } while (--limit > 0);
++}
++
++/********
++ * LZMA *
++ ********/
++
++/* Get pointer to literal coder probability array. */
++static uint16_t *INIT lzma_literal_probs(struct xz_dec_lzma2 *s)
++{
++      uint32_t prev_byte = dict_get(&s->dict, 0);
++      uint32_t low = prev_byte >> (8 - s->lzma.lc);
++      uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
++      return s->lzma.literal[low + high];
++}
++
++/* Decode a literal (one 8-bit byte) */
++static void INIT lzma_literal(struct xz_dec_lzma2 *s)
++{
++      uint16_t *probs;
++      uint32_t symbol;
++      uint32_t match_byte;
++      uint32_t match_bit;
++      uint32_t offset;
++      uint32_t i;
++
++      probs = lzma_literal_probs(s);
++
++      if (lzma_state_is_literal(s->lzma.state)) {
++              symbol = rc_bittree(&s->rc, probs, 0x100);
++      } else {
++              symbol = 1;
++              match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
++              offset = 0x100;
++
++              do {
++                      match_bit = match_byte & offset;
++                      match_byte <<= 1;
++                      i = offset + match_bit + symbol;
++
++                      if (rc_bit(&s->rc, &probs[i])) {
++                              symbol = (symbol << 1) + 1;
++                              offset &= match_bit;
++                      } else {
++                              symbol <<= 1;
++                              offset &= ~match_bit;
++                      }
++              } while (symbol < 0x100);
++      }
++
++      dict_put(&s->dict, (uint8_t)symbol);
++      lzma_state_literal(&s->lzma.state);
++}
++
++/* Decode the length of the match into s->lzma.len. */
++static void INIT lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
++                        uint32_t pos_state)
++{
++      uint16_t *probs;
++      uint32_t limit;
++
++      if (!rc_bit(&s->rc, &l->choice)) {
++              probs = l->low[pos_state];
++              limit = LEN_LOW_SYMBOLS;
++              s->lzma.len = MATCH_LEN_MIN;
++      } else {
++              if (!rc_bit(&s->rc, &l->choice2)) {
++                      probs = l->mid[pos_state];
++                      limit = LEN_MID_SYMBOLS;
++                      s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
++              } else {
++                      probs = l->high;
++                      limit = LEN_HIGH_SYMBOLS;
++                      s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
++                                      + LEN_MID_SYMBOLS;
++              }
++      }
++
++      s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
++}
++
++/* Decode a match. The distance will be stored in s->lzma.rep0. */
++static void INIT lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
++{
++      uint16_t *probs;
++      uint32_t dist_slot;
++      uint32_t limit;
++
++      lzma_state_match(&s->lzma.state);
++
++      s->lzma.rep3 = s->lzma.rep2;
++      s->lzma.rep2 = s->lzma.rep1;
++      s->lzma.rep1 = s->lzma.rep0;
++
++      lzma_len(s, &s->lzma.match_len_dec, pos_state);
++
++      probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
++      dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
++
++      if (dist_slot < DIST_MODEL_START) {
++              s->lzma.rep0 = dist_slot;
++      } else {
++              limit = (dist_slot >> 1) - 1;
++              s->lzma.rep0 = 2 + (dist_slot & 1);
++
++              if (dist_slot < DIST_MODEL_END) {
++                      s->lzma.rep0 <<= limit;
++                      probs = s->lzma.dist_special + s->lzma.rep0
++                                      - dist_slot - 1;
++                      rc_bittree_reverse(&s->rc, probs,
++                                      &s->lzma.rep0, limit);
++              } else {
++                      rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
++                      s->lzma.rep0 <<= ALIGN_BITS;
++                      rc_bittree_reverse(&s->rc, s->lzma.dist_align,
++                                      &s->lzma.rep0, ALIGN_BITS);
++              }
++      }
++}
++
++/*
++ * Decode a repeated match. The distance is one of the four most recently
++ * seen matches. The distance will be stored in s->lzma.rep0.
++ */
++static void INIT lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
++{
++      uint32_t tmp;
++
++      if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
++              if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
++                              s->lzma.state][pos_state])) {
++                      lzma_state_short_rep(&s->lzma.state);
++                      s->lzma.len = 1;
++                      return;
++              }
++      } else {
++              if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
++                      tmp = s->lzma.rep1;
++              } else {
++                      if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
++                              tmp = s->lzma.rep2;
++                      } else {
++                              tmp = s->lzma.rep3;
++                              s->lzma.rep3 = s->lzma.rep2;
++                      }
++
++                      s->lzma.rep2 = s->lzma.rep1;
++              }
++
++              s->lzma.rep1 = s->lzma.rep0;
++              s->lzma.rep0 = tmp;
++      }
++
++      lzma_state_long_rep(&s->lzma.state);
++      lzma_len(s, &s->lzma.rep_len_dec, pos_state);
++}
++
++/* LZMA decoder core */
++static bool_t INIT lzma_main(struct xz_dec_lzma2 *s)
++{
++      uint32_t pos_state;
++
++      /*
++       * If the dictionary was reached during the previous call, try to
++       * finish the possibly pending repeat in the dictionary.
++       */
++      if (dict_has_space(&s->dict) && s->lzma.len > 0)
++              dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
++
++      /*
++       * Decode more LZMA symbols. One iteration may consume up to
++       * LZMA_IN_REQUIRED - 1 bytes.
++       */
++      while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
++              pos_state = s->dict.pos & s->lzma.pos_mask;
++
++              if (!rc_bit(&s->rc, &s->lzma.is_match[
++                              s->lzma.state][pos_state])) {
++                      lzma_literal(s);
++              } else {
++                      if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
++                              lzma_rep_match(s, pos_state);
++                      else
++                              lzma_match(s, pos_state);
++
++                      if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
++                              return false;
++              }
++      }
++
++      /*
++       * Having the range decoder always normalized when we are outside
++       * this function makes it easier to correctly handle end of the chunk.
++       */
++      rc_normalize(&s->rc);
++
++      return true;
++}
++
++/*
++ * Reset the LZMA decoder and range decoder state. Dictionary is nore reset
++ * here, because LZMA state may be reset without resetting the dictionary.
++ */
++static void INIT lzma_reset(struct xz_dec_lzma2 *s)
++{
++      uint16_t *probs;
++      size_t i;
++
++      s->lzma.state = STATE_LIT_LIT;
++      s->lzma.rep0 = 0;
++      s->lzma.rep1 = 0;
++      s->lzma.rep2 = 0;
++      s->lzma.rep3 = 0;
++
++      /*
++       * All probabilities are initialized to the same value. This hack
++       * makes the code smaller by avoiding a separate loop for each
++       * probability array.
++       *
++       * This could be optimized so that only that part of literal
++       * probabilities that are actually required. In the common case
++       * we would write 12 KiB less.
++       */
++      probs = s->lzma.is_match[0];
++      for (i = 0; i < PROBS_TOTAL; ++i)
++              probs[i] = RC_BIT_MODEL_TOTAL / 2;
++
++      rc_reset(&s->rc);
++}
++
++/*
++ * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
++ * from the decoded lp and pb values. On success, the LZMA decoder state is
++ * reset and true is returned.
++ */
++static bool_t INIT lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
++{
++      if (props > (4 * 5 + 4) * 9 + 8)
++              return false;
++
++      s->lzma.pos_mask = 0;
++      while (props >= 9 * 5) {
++              props -= 9 * 5;
++              ++s->lzma.pos_mask;
++      }
++
++      s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
++
++      s->lzma.literal_pos_mask = 0;
++      while (props >= 9) {
++              props -= 9;
++              ++s->lzma.literal_pos_mask;
++      }
++
++      s->lzma.lc = props;
++
++      if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
++              return false;
++
++      s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
++
++      lzma_reset(s);
++
++      return true;
++}
++
++/*********
++ * LZMA2 *
++ *********/
++
++/*
++ * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
++ * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
++ * wrapper function takes care of making the LZMA decoder's assumption safe.
++ *
++ * As long as there is plenty of input left to be decoded in the current LZMA
++ * chunk, we decode directly from the caller-supplied input buffer until
++ * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
++ * s->temp.buf, which (hopefully) gets filled on the next call to this
++ * function. We decode a few bytes from the temporary buffer so that we can
++ * continue decoding from the caller-supplied input buffer again.
++ */
++static bool_t INIT lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
++{
++      size_t in_avail;
++      uint32_t tmp;
++
++      in_avail = b->in_size - b->in_pos;
++      if (s->temp.size > 0 || s->lzma2.compressed == 0) {
++              tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
++              if (tmp > s->lzma2.compressed - s->temp.size)
++                      tmp = s->lzma2.compressed - s->temp.size;
++              if (tmp > in_avail)
++                      tmp = in_avail;
++
++              memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
++
++              if (s->temp.size + tmp == s->lzma2.compressed) {
++                      memzero(s->temp.buf + s->temp.size + tmp,
++                                      sizeof(s->temp.buf)
++                                              - s->temp.size - tmp);
++                      s->rc.in_limit = s->temp.size + tmp;
++              } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
++                      s->temp.size += tmp;
++                      b->in_pos += tmp;
++                      return true;
++              } else {
++                      s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
++              }
++
++              s->rc.in = s->temp.buf;
++              s->rc.in_pos = 0;
++
++              if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
++                      return false;
++
++              s->lzma2.compressed -= s->rc.in_pos;
++
++              if (s->rc.in_pos < s->temp.size) {
++                      s->temp.size -= s->rc.in_pos;
++                      memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
++                                      s->temp.size);
++                      return true;
++              }
++
++              b->in_pos += s->rc.in_pos - s->temp.size;
++              s->temp.size = 0;
++      }
++
++      in_avail = b->in_size - b->in_pos;
++      if (in_avail >= LZMA_IN_REQUIRED) {
++              s->rc.in = b->in;
++              s->rc.in_pos = b->in_pos;
++
++              if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
++                      s->rc.in_limit = b->in_pos + s->lzma2.compressed;
++              else
++                      s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
++
++              if (!lzma_main(s))
++                      return false;
++
++              in_avail = s->rc.in_pos - b->in_pos;
++              if (in_avail > s->lzma2.compressed)
++                      return false;
++
++              s->lzma2.compressed -= in_avail;
++              b->in_pos = s->rc.in_pos;
++      }
++
++      in_avail = b->in_size - b->in_pos;
++      if (in_avail < LZMA_IN_REQUIRED) {
++              if (in_avail > s->lzma2.compressed)
++                      in_avail = s->lzma2.compressed;
++
++              memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
++              s->temp.size = in_avail;
++              b->in_pos += in_avail;
++      }
++
++      return true;
++}
++
++/*
++ * Take care of the LZMA2 control layer, and forward the job of actual LZMA
++ * decoding or copying of uncompressed chunks to other functions.
++ */
++XZ_EXTERN enum xz_ret INIT xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
++                                          struct xz_buf *b)
++{
++      uint32_t tmp;
++
++      while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
++              switch (s->lzma2.sequence) {
++              case SEQ_CONTROL:
++                      /*
++                       * LZMA2 control byte
++                       *
++                       * Exact values:
++                       *   0x00   End marker
++                       *   0x01   Dictionary reset followed by
++                       *          an uncompressed chunk
++                       *   0x02   Uncompressed chunk (no dictionary reset)
++                       *
++                       * Highest three bits (s->control & 0xE0):
++                       *   0xE0   Dictionary reset, new properties and state
++                       *          reset, followed by LZMA compressed chunk
++                       *   0xC0   New properties and state reset, followed
++                       *          by LZMA compressed chunk (no dictionary
++                       *          reset)
++                       *   0xA0   State reset using old properties,
++                       *          followed by LZMA compressed chunk (no
++                       *          dictionary reset)
++                       *   0x80   LZMA chunk (no dictionary or state reset)
++                       *
++                       * For LZMA compressed chunks, the lowest five bits
++                       * (s->control & 1F) are the highest bits of the
++                       * uncompressed size (bits 16-20).
++                       *
++                       * A new LZMA2 stream must begin with a dictionary
++                       * reset. The first LZMA chunk must set new
++                       * properties and reset the LZMA state.
++                       *
++                       * Values that don't match anything described above
++                       * are invalid and we return XZ_DATA_ERROR.
++                       */
++                      tmp = b->in[b->in_pos++];
++
++                      if (tmp >= 0xE0 || tmp == 0x01) {
++                              s->lzma2.need_props = true;
++                              s->lzma2.need_dict_reset = false;
++                              dict_reset(&s->dict, b);
++                      } else if (s->lzma2.need_dict_reset) {
++                              return XZ_DATA_ERROR;
++                      }
++
++                      if (tmp >= 0x80) {
++                              s->lzma2.uncompressed = (tmp & 0x1F) << 16;
++                              s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
++
++                              if (tmp >= 0xC0) {
++                                      /*
++                                       * When there are new properties,
++                                       * state reset is done at
++                                       * SEQ_PROPERTIES.
++                                       */
++                                      s->lzma2.need_props = false;
++                                      s->lzma2.next_sequence
++                                                      = SEQ_PROPERTIES;
++
++                              } else if (s->lzma2.need_props) {
++                                      return XZ_DATA_ERROR;
++
++                              } else {
++                                      s->lzma2.next_sequence
++                                                      = SEQ_LZMA_PREPARE;
++                                      if (tmp >= 0xA0)
++                                              lzma_reset(s);
++                              }
++                      } else {
++                              if (tmp == 0x00)
++                                      return XZ_STREAM_END;
++
++                              if (tmp > 0x02)
++                                      return XZ_DATA_ERROR;
++
++                              s->lzma2.sequence = SEQ_COMPRESSED_0;
++                              s->lzma2.next_sequence = SEQ_COPY;
++                      }
++
++                      break;
++
++              case SEQ_UNCOMPRESSED_1:
++                      s->lzma2.uncompressed
++                                      += (uint32_t)b->in[b->in_pos++] << 8;
++                      s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
++                      break;
++
++              case SEQ_UNCOMPRESSED_2:
++                      s->lzma2.uncompressed
++                                      += (uint32_t)b->in[b->in_pos++] + 1;
++                      s->lzma2.sequence = SEQ_COMPRESSED_0;
++                      break;
++
++              case SEQ_COMPRESSED_0:
++                      s->lzma2.compressed
++                                      = (uint32_t)b->in[b->in_pos++] << 8;
++                      s->lzma2.sequence = SEQ_COMPRESSED_1;
++                      break;
++
++              case SEQ_COMPRESSED_1:
++                      s->lzma2.compressed
++                                      += (uint32_t)b->in[b->in_pos++] + 1;
++                      s->lzma2.sequence = s->lzma2.next_sequence;
++                      break;
++
++              case SEQ_PROPERTIES:
++                      if (!lzma_props(s, b->in[b->in_pos++]))
++                              return XZ_DATA_ERROR;
++
++                      s->lzma2.sequence = SEQ_LZMA_PREPARE;
++
++              case SEQ_LZMA_PREPARE:
++                      if (s->lzma2.compressed < RC_INIT_BYTES)
++                              return XZ_DATA_ERROR;
++
++                      if (!rc_read_init(&s->rc, b))
++                              return XZ_OK;
++
++                      s->lzma2.compressed -= RC_INIT_BYTES;
++                      s->lzma2.sequence = SEQ_LZMA_RUN;
++
++              case SEQ_LZMA_RUN:
++                      /*
++                       * Set dictionary limit to indicate how much we want
++                       * to be encoded at maximum. Decode new data into the
++                       * dictionary. Flush the new data from dictionary to
++                       * b->out. Check if we finished decoding this chunk.
++                       * In case the dictionary got full but we didn't fill
++                       * the output buffer yet, we may run this loop
++                       * multiple times without changing s->lzma2.sequence.
++                       */
++                      dict_limit(&s->dict, min_t(size_t,
++                                      b->out_size - b->out_pos,
++                                      s->lzma2.uncompressed));
++                      if (!lzma2_lzma(s, b))
++                              return XZ_DATA_ERROR;
++
++                      s->lzma2.uncompressed -= dict_flush(&s->dict, b);
++
++                      if (s->lzma2.uncompressed == 0) {
++                              if (s->lzma2.compressed > 0 || s->lzma.len > 0
++                                              || !rc_is_finished(&s->rc))
++                                      return XZ_DATA_ERROR;
++
++                              rc_reset(&s->rc);
++                              s->lzma2.sequence = SEQ_CONTROL;
++
++                      } else if (b->out_pos == b->out_size
++                                      || (b->in_pos == b->in_size
++                                              && s->temp.size
++                                              < s->lzma2.compressed)) {
++                              return XZ_OK;
++                      }
++
++                      break;
++
++              case SEQ_COPY:
++                      dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
++                      if (s->lzma2.compressed > 0)
++                              return XZ_OK;
++
++                      s->lzma2.sequence = SEQ_CONTROL;
++                      break;
++              }
++      }
++
++      return XZ_OK;
++}
++
++XZ_EXTERN struct xz_dec_lzma2 *INIT xz_dec_lzma2_create(enum xz_mode mode,
++                                                 uint32_t dict_max)
++{
++      struct xz_dec_lzma2 *s = malloc(sizeof(*s));
++      if (s == NULL)
++              return NULL;
++
++      s->dict.mode = mode;
++      s->dict.size_max = dict_max;
++
++      if (DEC_IS_PREALLOC(mode)) {
++              s->dict.buf = large_malloc(dict_max);
++              if (s->dict.buf == NULL) {
++                      free(s);
++                      return NULL;
++              }
++      } else if (DEC_IS_DYNALLOC(mode)) {
++              s->dict.buf = NULL;
++              s->dict.allocated = 0;
++      }
++
++      return s;
++}
++
++XZ_EXTERN enum xz_ret INIT xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
++{
++      /* This limits dictionary size to 3 GiB to keep parsing simpler. */
++      if (props > 39)
++              return XZ_OPTIONS_ERROR;
++
++      s->dict.size = 2 + (props & 1);
++      s->dict.size <<= (props >> 1) + 11;
++
++      if (DEC_IS_MULTI(s->dict.mode)) {
++              if (s->dict.size > s->dict.size_max)
++                      return XZ_MEMLIMIT_ERROR;
++
++              s->dict.end = s->dict.size;
++
++              if (DEC_IS_DYNALLOC(s->dict.mode)) {
++                      if (s->dict.allocated < s->dict.size) {
++                              large_free(s->dict.buf);
++                              s->dict.buf = large_malloc(s->dict.size);
++                              if (s->dict.buf == NULL) {
++                                      s->dict.allocated = 0;
++                                      return XZ_MEM_ERROR;
++                              }
++                      }
++              }
++      }
++
++      s->lzma.len = 0;
++
++      s->lzma2.sequence = SEQ_CONTROL;
++      s->lzma2.need_dict_reset = true;
++
++      s->temp.size = 0;
++
++      return XZ_OK;
++}
++
++XZ_EXTERN void INIT xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
++{
++      if (DEC_IS_MULTI(s->dict.mode))
++              large_free(s->dict.buf);
++
++      free(s);
++}
+diff --git a/xen/common/xz/dec_stream.c b/xen/common/xz/dec_stream.c
+new file mode 100644
+--- /dev/null
++++ b/xen/common/xz/dec_stream.c
+@@ -0,0 +1,821 @@
++/*
++ * .xz Stream decoder
++ *
++ * Author: Lasse Collin <lasse.collin@tukaani.org>
++ *
++ * This file has been put into the public domain.
++ * You can do whatever you want with this file.
++ */
++
++#include "private.h"
++#include "stream.h"
++
++/* Hash used to validate the Index field */
++struct xz_dec_hash {
++      vli_type unpadded;
++      vli_type uncompressed;
++      uint32_t crc32;
++};
++
++struct xz_dec {
++      /* Position in dec_main() */
++      enum {
++              SEQ_STREAM_HEADER,
++              SEQ_BLOCK_START,
++              SEQ_BLOCK_HEADER,
++              SEQ_BLOCK_UNCOMPRESS,
++              SEQ_BLOCK_PADDING,
++              SEQ_BLOCK_CHECK,
++              SEQ_INDEX,
++              SEQ_INDEX_PADDING,
++              SEQ_INDEX_CRC32,
++              SEQ_STREAM_FOOTER
++      } sequence;
++
++      /* Position in variable-length integers and Check fields */
++      uint32_t pos;
++
++      /* Variable-length integer decoded by dec_vli() */
++      vli_type vli;
++
++      /* Saved in_pos and out_pos */
++      size_t in_start;
++      size_t out_start;
++
++      /* CRC32 value in Block or Index */
++      uint32_t crc32;
++
++      /* Type of the integrity check calculated from uncompressed data */
++      enum xz_check check_type;
++
++      /* Operation mode */
++      enum xz_mode mode;
++
++      /*
++       * True if the next call to xz_dec_run() is allowed to return
++       * XZ_BUF_ERROR.
++       */
++      bool_t allow_buf_error;
++
++      /* Information stored in Block Header */
++      struct {
++              /*
++               * Value stored in the Compressed Size field, or
++               * VLI_UNKNOWN if Compressed Size is not present.
++               */
++              vli_type compressed;
++
++              /*
++               * Value stored in the Uncompressed Size field, or
++               * VLI_UNKNOWN if Uncompressed Size is not present.
++               */
++              vli_type uncompressed;
++
++              /* Size of the Block Header field */
++              uint32_t size;
++      } block_header;
++
++      /* Information collected when decoding Blocks */
++      struct {
++              /* Observed compressed size of the current Block */
++              vli_type compressed;
++
++              /* Observed uncompressed size of the current Block */
++              vli_type uncompressed;
++
++              /* Number of Blocks decoded so far */
++              vli_type count;
++
++              /*
++               * Hash calculated from the Block sizes. This is used to
++               * validate the Index field.
++               */
++              struct xz_dec_hash hash;
++      } block;
++
++      /* Variables needed when verifying the Index field */
++      struct {
++              /* Position in dec_index() */
++              enum {
++                      SEQ_INDEX_COUNT,
++                      SEQ_INDEX_UNPADDED,
++                      SEQ_INDEX_UNCOMPRESSED
++              } sequence;
++
++              /* Size of the Index in bytes */
++              vli_type size;
++
++              /* Number of Records (matches block.count in valid files) */
++              vli_type count;
++
++              /*
++               * Hash calculated from the Records (matches block.hash in
++               * valid files).
++               */
++              struct xz_dec_hash hash;
++      } index;
++
++      /*
++       * Temporary buffer needed to hold Stream Header, Block Header,
++       * and Stream Footer. The Block Header is the biggest (1 KiB)
++       * so we reserve space according to that. buf[] has to be aligned
++       * to a multiple of four bytes; the size_t variables before it
++       * should guarantee this.
++       */
++      struct {
++              size_t pos;
++              size_t size;
++              uint8_t buf[1024];
++      } temp;
++
++      struct xz_dec_lzma2 *lzma2;
++
++#ifdef XZ_DEC_BCJ
++      struct xz_dec_bcj *bcj;
++      bool_t bcj_active;
++#endif
++};
++
++#ifdef XZ_DEC_ANY_CHECK
++/* Sizes of the Check field with different Check IDs */
++static const uint8_t check_sizes[16] = {
++      0,
++      4, 4, 4,
++      8, 8, 8,
++      16, 16, 16,
++      32, 32, 32,
++      64, 64, 64
++};
++#endif
++
++/*
++ * Fill s->temp by copying data starting from b->in[b->in_pos]. Caller
++ * must have set s->temp.pos to indicate how much data we are supposed
++ * to copy into s->temp.buf. Return true once s->temp.pos has reached
++ * s->temp.size.
++ */
++static bool_t INIT fill_temp(struct xz_dec *s, struct xz_buf *b)
++{
++      size_t copy_size = min_t(size_t,
++                      b->in_size - b->in_pos, s->temp.size - s->temp.pos);
++
++      memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
++      b->in_pos += copy_size;
++      s->temp.pos += copy_size;
++
++      if (s->temp.pos == s->temp.size) {
++              s->temp.pos = 0;
++              return true;
++      }
++
++      return false;
++}
++
++/* Decode a variable-length integer (little-endian base-128 encoding) */
++static enum xz_ret INIT dec_vli(struct xz_dec *s, const uint8_t *in,
++                              size_t *in_pos, size_t in_size)
++{
++      uint8_t byte;
++
++      if (s->pos == 0)
++              s->vli = 0;
++
++      while (*in_pos < in_size) {
++              byte = in[*in_pos];
++              ++*in_pos;
++
++              s->vli |= (vli_type)(byte & 0x7F) << s->pos;
++
++              if ((byte & 0x80) == 0) {
++                      /* Don't allow non-minimal encodings. */
++                      if (byte == 0 && s->pos != 0)
++                              return XZ_DATA_ERROR;
++
++                      s->pos = 0;
++                      return XZ_STREAM_END;
++              }
++
++              s->pos += 7;
++              if (s->pos == 7 * VLI_BYTES_MAX)
++                      return XZ_DATA_ERROR;
++      }
++
++      return XZ_OK;
++}
++
++/*
++ * Decode the Compressed Data field from a Block. Update and validate
++ * the observed compressed and uncompressed sizes of the Block so that
++ * they don't exceed the values possibly stored in the Block Header
++ * (validation assumes that no integer overflow occurs, since vli_type
++ * is normally uint64_t). Update the CRC32 if presence of the CRC32
++ * field was indicated in Stream Header.
++ *
++ * Once the decoding is finished, validate that the observed sizes match
++ * the sizes possibly stored in the Block Header. Update the hash and
++ * Block count, which are later used to validate the Index field.
++ */
++static enum xz_ret INIT dec_block(struct xz_dec *s, struct xz_buf *b)
++{
++      enum xz_ret ret;
++
++      s->in_start = b->in_pos;
++      s->out_start = b->out_pos;
++
++#ifdef XZ_DEC_BCJ
++      if (s->bcj_active)
++              ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
++      else
++#endif
++              ret = xz_dec_lzma2_run(s->lzma2, b);
++
++      s->block.compressed += b->in_pos - s->in_start;
++      s->block.uncompressed += b->out_pos - s->out_start;
++
++      /*
++       * There is no need to separately check for VLI_UNKNOWN, since
++       * the observed sizes are always smaller than VLI_UNKNOWN.
++       */
++      if (s->block.compressed > s->block_header.compressed
++                      || s->block.uncompressed
++                              > s->block_header.uncompressed)
++              return XZ_DATA_ERROR;
++
++      if (s->check_type == XZ_CHECK_CRC32)
++              s->crc32 = xz_crc32(b->out + s->out_start,
++                              b->out_pos - s->out_start, s->crc32);
++
++      if (ret == XZ_STREAM_END) {
++              if (s->block_header.compressed != VLI_UNKNOWN
++                              && s->block_header.compressed
++                                      != s->block.compressed)
++                      return XZ_DATA_ERROR;
++
++              if (s->block_header.uncompressed != VLI_UNKNOWN
++                              && s->block_header.uncompressed
++                                      != s->block.uncompressed)
++                      return XZ_DATA_ERROR;
++
++              s->block.hash.unpadded += s->block_header.size
++                              + s->block.compressed;
++
++#ifdef XZ_DEC_ANY_CHECK
++              s->block.hash.unpadded += check_sizes[s->check_type];
++#else
++              if (s->check_type == XZ_CHECK_CRC32)
++                      s->block.hash.unpadded += 4;
++#endif
++
++              s->block.hash.uncompressed += s->block.uncompressed;
++              s->block.hash.crc32 = xz_crc32(
++                              (const uint8_t *)&s->block.hash,
++                              sizeof(s->block.hash), s->block.hash.crc32);
++
++              ++s->block.count;
++      }
++
++      return ret;
++}
++
++/* Update the Index size and the CRC32 value. */
++static void INIT index_update(struct xz_dec *s, const struct xz_buf *b)
++{
++      size_t in_used = b->in_pos - s->in_start;
++      s->index.size += in_used;
++      s->crc32 = xz_crc32(b->in + s->in_start, in_used, s->crc32);
++}
++
++/*
++ * Decode the Number of Records, Unpadded Size, and Uncompressed Size
++ * fields from the Index field. That is, Index Padding and CRC32 are not
++ * decoded by this function.
++ *
++ * This can return XZ_OK (more input needed), XZ_STREAM_END (everything
++ * successfully decoded), or XZ_DATA_ERROR (input is corrupt).
++ */
++static enum xz_ret INIT dec_index(struct xz_dec *s, struct xz_buf *b)
++{
++      enum xz_ret ret;
++
++      do {
++              ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
++              if (ret != XZ_STREAM_END) {
++                      index_update(s, b);
++                      return ret;
++              }
++
++              switch (s->index.sequence) {
++              case SEQ_INDEX_COUNT:
++                      s->index.count = s->vli;
++
++                      /*
++                       * Validate that the Number of Records field
++                       * indicates the same number of Records as
++                       * there were Blocks in the Stream.
++                       */
++                      if (s->index.count != s->block.count)
++                              return XZ_DATA_ERROR;
++
++                      s->index.sequence = SEQ_INDEX_UNPADDED;
++                      break;
++
++              case SEQ_INDEX_UNPADDED:
++                      s->index.hash.unpadded += s->vli;
++                      s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
++                      break;
++
++              case SEQ_INDEX_UNCOMPRESSED:
++                      s->index.hash.uncompressed += s->vli;
++                      s->index.hash.crc32 = xz_crc32(
++                                      (const uint8_t *)&s->index.hash,
++                                      sizeof(s->index.hash),
++                                      s->index.hash.crc32);
++                      --s->index.count;
++                      s->index.sequence = SEQ_INDEX_UNPADDED;
++                      break;
++              }
++      } while (s->index.count > 0);
++
++      return XZ_STREAM_END;
++}
++
++/*
++ * Validate that the next four input bytes match the value of s->crc32.
++ * s->pos must be zero when starting to validate the first byte.
++ */
++static enum xz_ret INIT crc32_validate(struct xz_dec *s, struct xz_buf *b)
++{
++      do {
++              if (b->in_pos == b->in_size)
++                      return XZ_OK;
++
++              if (((s->crc32 >> s->pos) & 0xFF) != b->in[b->in_pos++])
++                      return XZ_DATA_ERROR;
++
++              s->pos += 8;
++
++      } while (s->pos < 32);
++
++      s->crc32 = 0;
++      s->pos = 0;
++
++      return XZ_STREAM_END;
++}
++
++#ifdef XZ_DEC_ANY_CHECK
++/*
++ * Skip over the Check field when the Check ID is not supported.
++ * Returns true once the whole Check field has been skipped over.
++ */
++static bool_t INIT check_skip(struct xz_dec *s, struct xz_buf *b)
++{
++      while (s->pos < check_sizes[s->check_type]) {
++              if (b->in_pos == b->in_size)
++                      return false;
++
++              ++b->in_pos;
++              ++s->pos;
++      }
++
++      s->pos = 0;
++
++      return true;
++}
++#endif
++
++/* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */
++static enum xz_ret INIT dec_stream_header(struct xz_dec *s)
++{
++      if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
++              return XZ_FORMAT_ERROR;
++
++      if (xz_crc32(s->temp.buf + HEADER_MAGIC_SIZE, 2, 0)
++                      != get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
++              return XZ_DATA_ERROR;
++
++      if (s->temp.buf[HEADER_MAGIC_SIZE] != 0)
++              return XZ_OPTIONS_ERROR;
++
++      /*
++       * Of integrity checks, we support only none (Check ID = 0) and
++       * CRC32 (Check ID = 1). However, if XZ_DEC_ANY_CHECK is defined,
++       * we will accept other check types too, but then the check won't
++       * be verified and a warning (XZ_UNSUPPORTED_CHECK) will be given.
++       */
++      s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];
++
++#ifdef XZ_DEC_ANY_CHECK
++      if (s->check_type > XZ_CHECK_MAX)
++              return XZ_OPTIONS_ERROR;
++
++      if (s->check_type > XZ_CHECK_CRC32)
++              return XZ_UNSUPPORTED_CHECK;
++#else
++      if (s->check_type > XZ_CHECK_CRC32)
++              return XZ_OPTIONS_ERROR;
++#endif
++
++      return XZ_OK;
++}
++
++/* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */
++static enum xz_ret INIT dec_stream_footer(struct xz_dec *s)
++{
++      if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
++              return XZ_DATA_ERROR;
++
++      if (xz_crc32(s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
++              return XZ_DATA_ERROR;
++
++      /*
++       * Validate Backward Size. Note that we never added the size of the
++       * Index CRC32 field to s->index.size, thus we use s->index.size / 4
++       * instead of s->index.size / 4 - 1.
++       */
++      if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
++              return XZ_DATA_ERROR;
++
++      if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->check_type)
++              return XZ_DATA_ERROR;
++
++      /*
++       * Use XZ_STREAM_END instead of XZ_OK to be more convenient
++       * for the caller.
++       */
++      return XZ_STREAM_END;
++}
++
++/* Decode the Block Header and initialize the filter chain. */
++static enum xz_ret INIT dec_block_header(struct xz_dec *s)
++{
++      enum xz_ret ret;
++
++      /*
++       * Validate the CRC32. We know that the temp buffer is at least
++       * eight bytes so this is safe.
++       */
++      s->temp.size -= 4;
++      if (xz_crc32(s->temp.buf, s->temp.size, 0)
++                      != get_le32(s->temp.buf + s->temp.size))
++              return XZ_DATA_ERROR;
++
++      s->temp.pos = 2;
++
++      /*
++       * Catch unsupported Block Flags. We support only one or two filters
++       * in the chain, so we catch that with the same test.
++       */
++#ifdef XZ_DEC_BCJ
++      if (s->temp.buf[1] & 0x3E)
++#else
++      if (s->temp.buf[1] & 0x3F)
++#endif
++              return XZ_OPTIONS_ERROR;
++
++      /* Compressed Size */
++      if (s->temp.buf[1] & 0x40) {
++              if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
++                                      != XZ_STREAM_END)
++                      return XZ_DATA_ERROR;
++
++              s->block_header.compressed = s->vli;
++      } else {
++              s->block_header.compressed = VLI_UNKNOWN;
++      }
++
++      /* Uncompressed Size */
++      if (s->temp.buf[1] & 0x80) {
++              if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
++                              != XZ_STREAM_END)
++                      return XZ_DATA_ERROR;
++
++              s->block_header.uncompressed = s->vli;
++      } else {
++              s->block_header.uncompressed = VLI_UNKNOWN;
++      }
++
++#ifdef XZ_DEC_BCJ
++      /* If there are two filters, the first one must be a BCJ filter. */
++      s->bcj_active = s->temp.buf[1] & 0x01;
++      if (s->bcj_active) {
++              if (s->temp.size - s->temp.pos < 2)
++                      return XZ_OPTIONS_ERROR;
++
++              ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
++              if (ret != XZ_OK)
++                      return ret;
++
++              /*
++               * We don't support custom start offset,
++               * so Size of Properties must be zero.
++               */
++              if (s->temp.buf[s->temp.pos++] != 0x00)
++                      return XZ_OPTIONS_ERROR;
++      }
++#endif
++
++      /* Valid Filter Flags always take at least two bytes. */
++      if (s->temp.size - s->temp.pos < 2)
++              return XZ_DATA_ERROR;
++
++      /* Filter ID = LZMA2 */
++      if (s->temp.buf[s->temp.pos++] != 0x21)
++              return XZ_OPTIONS_ERROR;
++
++      /* Size of Properties = 1-byte Filter Properties */
++      if (s->temp.buf[s->temp.pos++] != 0x01)
++              return XZ_OPTIONS_ERROR;
++
++      /* Filter Properties contains LZMA2 dictionary size. */
++      if (s->temp.size - s->temp.pos < 1)
++              return XZ_DATA_ERROR;
++
++      ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
++      if (ret != XZ_OK)
++              return ret;
++
++      /* The rest must be Header Padding. */
++      while (s->temp.pos < s->temp.size)
++              if (s->temp.buf[s->temp.pos++] != 0x00)
++                      return XZ_OPTIONS_ERROR;
++
++      s->temp.pos = 0;
++      s->block.compressed = 0;
++      s->block.uncompressed = 0;
++
++      return XZ_OK;
++}
++
++static enum xz_ret INIT dec_main(struct xz_dec *s, struct xz_buf *b)
++{
++      enum xz_ret ret;
++
++      /*
++       * Store the start position for the case when we are in the middle
++       * of the Index field.
++       */
++      s->in_start = b->in_pos;
++
++      while (true) {
++              switch (s->sequence) {
++              case SEQ_STREAM_HEADER:
++                      /*
++                       * Stream Header is copied to s->temp, and then
++                       * decoded from there. This way if the caller
++                       * gives us only little input at a time, we can
++                       * still keep the Stream Header decoding code
++                       * simple. Similar approach is used in many places
++                       * in this file.
++                       */
++                      if (!fill_temp(s, b))
++                              return XZ_OK;
++
++                      /*
++                       * If dec_stream_header() returns
++                       * XZ_UNSUPPORTED_CHECK, it is still possible
++                       * to continue decoding if working in multi-call
++                       * mode. Thus, update s->sequence before calling
++                       * dec_stream_header().
++                       */
++                      s->sequence = SEQ_BLOCK_START;
++
++                      ret = dec_stream_header(s);
++                      if (ret != XZ_OK)
++                              return ret;
++
++              case SEQ_BLOCK_START:
++                      /* We need one byte of input to continue. */
++                      if (b->in_pos == b->in_size)
++                              return XZ_OK;
++
++                      /* See if this is the beginning of the Index field. */
++                      if (b->in[b->in_pos] == 0) {
++                              s->in_start = b->in_pos++;
++                              s->sequence = SEQ_INDEX;
++                              break;
++                      }
++
++                      /*
++                       * Calculate the size of the Block Header and
++                       * prepare to decode it.
++                       */
++                      s->block_header.size
++                              = ((uint32_t)b->in[b->in_pos] + 1) * 4;
++
++                      s->temp.size = s->block_header.size;
++                      s->temp.pos = 0;
++                      s->sequence = SEQ_BLOCK_HEADER;
++
++              case SEQ_BLOCK_HEADER:
++                      if (!fill_temp(s, b))
++                              return XZ_OK;
++
++                      ret = dec_block_header(s);
++                      if (ret != XZ_OK)
++                              return ret;
++
++                      s->sequence = SEQ_BLOCK_UNCOMPRESS;
++
++              case SEQ_BLOCK_UNCOMPRESS:
++                      ret = dec_block(s, b);
++                      if (ret != XZ_STREAM_END)
++                              return ret;
++
++                      s->sequence = SEQ_BLOCK_PADDING;
++
++              case SEQ_BLOCK_PADDING:
++                      /*
++                       * Size of Compressed Data + Block Padding
++                       * must be a multiple of four. We don't need
++                       * s->block.compressed for anything else
++                       * anymore, so we use it here to test the size
++                       * of the Block Padding field.
++                       */
++                      while (s->block.compressed & 3) {
++                              if (b->in_pos == b->in_size)
++                                      return XZ_OK;
++
++                              if (b->in[b->in_pos++] != 0)
++                                      return XZ_DATA_ERROR;
++
++                              ++s->block.compressed;
++                      }
++
++                      s->sequence = SEQ_BLOCK_CHECK;
++
++              case SEQ_BLOCK_CHECK:
++                      if (s->check_type == XZ_CHECK_CRC32) {
++                              ret = crc32_validate(s, b);
++                              if (ret != XZ_STREAM_END)
++                                      return ret;
++                      }
++#ifdef XZ_DEC_ANY_CHECK
++                      else if (!check_skip(s, b)) {
++                              return XZ_OK;
++                      }
++#endif
++
++                      s->sequence = SEQ_BLOCK_START;
++                      break;
++
++              case SEQ_INDEX:
++                      ret = dec_index(s, b);
++                      if (ret != XZ_STREAM_END)
++                              return ret;
++
++                      s->sequence = SEQ_INDEX_PADDING;
++
++              case SEQ_INDEX_PADDING:
++                      while ((s->index.size + (b->in_pos - s->in_start))
++                                      & 3) {
++                              if (b->in_pos == b->in_size) {
++                                      index_update(s, b);
++                                      return XZ_OK;
++                              }
++
++                              if (b->in[b->in_pos++] != 0)
++                                      return XZ_DATA_ERROR;
++                      }
++
++                      /* Finish the CRC32 value and Index size. */
++                      index_update(s, b);
++
++                      /* Compare the hashes to validate the Index field. */
++                      if (!memeq(&s->block.hash, &s->index.hash,
++                                      sizeof(s->block.hash)))
++                              return XZ_DATA_ERROR;
++
++                      s->sequence = SEQ_INDEX_CRC32;
++
++              case SEQ_INDEX_CRC32:
++                      ret = crc32_validate(s, b);
++                      if (ret != XZ_STREAM_END)
++                              return ret;
++
++                      s->temp.size = STREAM_HEADER_SIZE;
++                      s->sequence = SEQ_STREAM_FOOTER;
++
++              case SEQ_STREAM_FOOTER:
++                      if (!fill_temp(s, b))
++                              return XZ_OK;
++
++                      return dec_stream_footer(s);
++              }
++      }
++
++      /* Never reached */
++}
++
++XZ_EXTERN void INIT xz_dec_reset(struct xz_dec *s)
++{
++      s->sequence = SEQ_STREAM_HEADER;
++      s->allow_buf_error = false;
++      s->pos = 0;
++      s->crc32 = 0;
++      memzero(&s->block, sizeof(s->block));
++      memzero(&s->index, sizeof(s->index));
++      s->temp.pos = 0;
++      s->temp.size = STREAM_HEADER_SIZE;
++}
++
++/*
++ * xz_dec_run() is a wrapper for dec_main() to handle some special cases in
++ * multi-call and single-call decoding.
++ *
++ * In multi-call mode, we must return XZ_BUF_ERROR when it seems clear that we
++ * are not going to make any progress anymore. This is to prevent the caller
++ * from calling us infinitely when the input file is truncated or otherwise
++ * corrupt. Since zlib-style API allows that the caller fills the input buffer
++ * only when the decoder doesn't produce any new output, we have to be careful
++ * to avoid returning XZ_BUF_ERROR too easily: XZ_BUF_ERROR is returned only
++ * after the second consecutive call to xz_dec_run() that makes no progress.
++ *
++ * In single-call mode, if we couldn't decode everything and no error
++ * occurred, either the input is truncated or the output buffer is too small.
++ * Since we know that the last input byte never produces any output, we know
++ * that if all the input was consumed and decoding wasn't finished, the file
++ * must be corrupt. Otherwise the output buffer has to be too small or the
++ * file is corrupt in a way that decoding it produces too big output.
++ *
++ * If single-call decoding fails, we reset b->in_pos and b->out_pos back to
++ * their original values. This is because with some filter chains there won't
++ * be any valid uncompressed data in the output buffer unless the decoding
++ * actually succeeds (that's the price to pay of using the output buffer as
++ * the workspace).
++ */
++XZ_EXTERN enum xz_ret INIT xz_dec_run(struct xz_dec *s, struct xz_buf *b)
++{
++      size_t in_start;
++      size_t out_start;
++      enum xz_ret ret;
++
++      if (DEC_IS_SINGLE(s->mode))
++              xz_dec_reset(s);
++
++      in_start = b->in_pos;
++      out_start = b->out_pos;
++      ret = dec_main(s, b);
++
++      if (DEC_IS_SINGLE(s->mode)) {
++              if (ret == XZ_OK)
++                      ret = b->in_pos == b->in_size
++                                      ? XZ_DATA_ERROR : XZ_BUF_ERROR;
++
++              if (ret != XZ_STREAM_END) {
++                      b->in_pos = in_start;
++                      b->out_pos = out_start;
++              }
++
++      } else if (ret == XZ_OK && in_start == b->in_pos
++                      && out_start == b->out_pos) {
++              if (s->allow_buf_error)
++                      ret = XZ_BUF_ERROR;
++
++              s->allow_buf_error = true;
++      } else {
++              s->allow_buf_error = false;
++      }
++
++      return ret;
++}
++
++XZ_EXTERN struct xz_dec *INIT xz_dec_init(enum xz_mode mode, uint32_t dict_max)
++{
++      struct xz_dec *s = malloc(sizeof(*s));
++      if (s == NULL)
++              return NULL;
++
++      s->mode = mode;
++
++#ifdef XZ_DEC_BCJ
++      s->bcj = xz_dec_bcj_create(DEC_IS_SINGLE(mode));
++      if (s->bcj == NULL)
++              goto error_bcj;
++#endif
++
++      s->lzma2 = xz_dec_lzma2_create(mode, dict_max);
++      if (s->lzma2 == NULL)
++              goto error_lzma2;
++
++      xz_dec_reset(s);
++      return s;
++
++error_lzma2:
++#ifdef XZ_DEC_BCJ
++      xz_dec_bcj_end(s->bcj);
++error_bcj:
++#endif
++      free(s);
++      return NULL;
++}
++
++XZ_EXTERN void INIT xz_dec_end(struct xz_dec *s)
++{
++      if (s != NULL) {
++              xz_dec_lzma2_end(s->lzma2);
++#ifdef XZ_DEC_BCJ
++              xz_dec_bcj_end(s->bcj);
++#endif
++              free(s);
++      }
++}
+diff --git a/xen/common/xz/lzma2.h b/xen/common/xz/lzma2.h
+new file mode 100644
+--- /dev/null
++++ b/xen/common/xz/lzma2.h
+@@ -0,0 +1,204 @@
++/*
++ * LZMA2 definitions
++ *
++ * Authors: Lasse Collin <lasse.collin@tukaani.org>
++ *          Igor Pavlov <http://7-zip.org/>
++ *
++ * This file has been put into the public domain.
++ * You can do whatever you want with this file.
++ */
++
++#ifndef XZ_LZMA2_H
++#define XZ_LZMA2_H
++
++/* Range coder constants */
++#define RC_SHIFT_BITS 8
++#define RC_TOP_BITS 24
++#define RC_TOP_VALUE (1 << RC_TOP_BITS)
++#define RC_BIT_MODEL_TOTAL_BITS 11
++#define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS)
++#define RC_MOVE_BITS 5
++
++/*
++ * Maximum number of position states. A position state is the lowest pb
++ * number of bits of the current uncompressed offset. In some places there
++ * are different sets of probabilities for different position states.
++ */
++#define POS_STATES_MAX (1 << 4)
++
++/*
++ * This enum is used to track which LZMA symbols have occurred most recently
++ * and in which order. This information is used to predict the next symbol.
++ *
++ * Symbols:
++ *  - Literal: One 8-bit byte
++ *  - Match: Repeat a chunk of data at some distance
++ *  - Long repeat: Multi-byte match at a recently seen distance
++ *  - Short repeat: One-byte repeat at a recently seen distance
++ *
++ * The symbol names are in from STATE_oldest_older_previous. REP means
++ * either short or long repeated match, and NONLIT means any non-literal.
++ */
++enum lzma_state {
++      STATE_LIT_LIT,
++      STATE_MATCH_LIT_LIT,
++      STATE_REP_LIT_LIT,
++      STATE_SHORTREP_LIT_LIT,
++      STATE_MATCH_LIT,
++      STATE_REP_LIT,
++      STATE_SHORTREP_LIT,
++      STATE_LIT_MATCH,
++      STATE_LIT_LONGREP,
++      STATE_LIT_SHORTREP,
++      STATE_NONLIT_MATCH,
++      STATE_NONLIT_REP
++};
++
++/* Total number of states */
++#define STATES 12
++
++/* The lowest 7 states indicate that the previous state was a literal. */
++#define LIT_STATES 7
++
++/* Indicate that the latest symbol was a literal. */
++static inline void INIT lzma_state_literal(enum lzma_state *state)
++{
++      if (*state <= STATE_SHORTREP_LIT_LIT)
++              *state = STATE_LIT_LIT;
++      else if (*state <= STATE_LIT_SHORTREP)
++              *state -= 3;
++      else
++              *state -= 6;
++}
++
++/* Indicate that the latest symbol was a match. */
++static inline void INIT lzma_state_match(enum lzma_state *state)
++{
++      *state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
++}
++
++/* Indicate that the latest state was a long repeated match. */
++static inline void INIT lzma_state_long_rep(enum lzma_state *state)
++{
++      *state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
++}
++
++/* Indicate that the latest symbol was a short match. */
++static inline void INIT lzma_state_short_rep(enum lzma_state *state)
++{
++      *state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
++}
++
++/* Test if the previous symbol was a literal. */
++static inline bool_t INIT lzma_state_is_literal(enum lzma_state state)
++{
++      return state < LIT_STATES;
++}
++
++/* Each literal coder is divided in three sections:
++ *   - 0x001-0x0FF: Without match byte
++ *   - 0x101-0x1FF: With match byte; match bit is 0
++ *   - 0x201-0x2FF: With match byte; match bit is 1
++ *
++ * Match byte is used when the previous LZMA symbol was something else than
++ * a literal (that is, it was some kind of match).
++ */
++#define LITERAL_CODER_SIZE 0x300
++
++/* Maximum number of literal coders */
++#define LITERAL_CODERS_MAX (1 << 4)
++
++/* Minimum length of a match is two bytes. */
++#define MATCH_LEN_MIN 2
++
++/* Match length is encoded with 4, 5, or 10 bits.
++ *
++ * Length   Bits
++ *  2-9      4 = Choice=0 + 3 bits
++ * 10-17     5 = Choice=1 + Choice2=0 + 3 bits
++ * 18-273   10 = Choice=1 + Choice2=1 + 8 bits
++ */
++#define LEN_LOW_BITS 3
++#define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS)
++#define LEN_MID_BITS 3
++#define LEN_MID_SYMBOLS (1 << LEN_MID_BITS)
++#define LEN_HIGH_BITS 8
++#define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS)
++#define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS)
++
++/*
++ * Maximum length of a match is 273 which is a result of the encoding
++ * described above.
++ */
++#define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1)
++
++/*
++ * Different sets of probabilities are used for match distances that have
++ * very short match length: Lengths of 2, 3, and 4 bytes have a separate
++ * set of probabilities for each length. The matches with longer length
++ * use a shared set of probabilities.
++ */
++#define DIST_STATES 4
++
++/*
++ * Get the index of the appropriate probability array for decoding
++ * the distance slot.
++ */
++static inline uint32_t INIT lzma_get_dist_state(uint32_t len)
++{
++      return len < DIST_STATES + MATCH_LEN_MIN
++                      ? len - MATCH_LEN_MIN : DIST_STATES - 1;
++}
++
++/*
++ * The highest two bits of a 32-bit match distance are encoded using six bits.
++ * This six-bit value is called a distance slot. This way encoding a 32-bit
++ * value takes 6-36 bits, larger values taking more bits.
++ */
++#define DIST_SLOT_BITS 6
++#define DIST_SLOTS (1 << DIST_SLOT_BITS)
++
++/* Match distances up to 127 are fully encoded using probabilities. Since
++ * the highest two bits (distance slot) are always encoded using six bits,
++ * the distances 0-3 don't need any additional bits to encode, since the
++ * distance slot itself is the same as the actual distance. DIST_MODEL_START
++ * indicates the first distance slot where at least one additional bit is
++ * needed.
++ */
++#define DIST_MODEL_START 4
++
++/*
++ * Match distances greater than 127 are encoded in three pieces:
++ *   - distance slot: the highest two bits
++ *   - direct bits: 2-26 bits below the highest two bits
++ *   - alignment bits: four lowest bits
++ *
++ * Direct bits don't use any probabilities.
++ *
++ * The distance slot value of 14 is for distances 128-191.
++ */
++#define DIST_MODEL_END 14
++
++/* Distance slots that indicate a distance <= 127. */
++#define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
++#define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)
++
++/*
++ * For match distances greater than 127, only the highest two bits and the
++ * lowest four bits (alignment) is encoded using probabilities.
++ */
++#define ALIGN_BITS 4
++#define ALIGN_SIZE (1 << ALIGN_BITS)
++#define ALIGN_MASK (ALIGN_SIZE - 1)
++
++/* Total number of all probability variables */
++#define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX * LITERAL_CODER_SIZE)
++
++/*
++ * LZMA remembers the four most recent match distances. Reusing these
++ * distances tends to take less space than re-encoding the actual
++ * distance value.
++ */
++#define REPS 4
++
++#endif
+diff --git a/xen/common/xz/private.h b/xen/common/xz/private.h
+new file mode 100644
+--- /dev/null
++++ b/xen/common/xz/private.h
+@@ -0,0 +1,271 @@
++/*
++ * Private includes and definitions
++ *
++ * Author: Lasse Collin <lasse.collin@tukaani.org>
++ *
++ * This file has been put into the public domain.
++ * You can do whatever you want with this file.
++ */
++
++#ifndef XZ_PRIVATE_H
++#define XZ_PRIVATE_H
++
++#include <xen/kernel.h>
++#include <asm/byteorder.h>
++#define get_le32(p) le32_to_cpup((const uint32_t *)(p))
++
++#if 1 /* ndef CONFIG_??? */
++static inline u32 INIT get_unaligned_le32(void *p)
++{
++      return le32_to_cpup(p);
++}
++
++static inline void INIT put_unaligned_le32(u32 val, void *p)
++{
++      *(__force __le32*)p = cpu_to_le32(val);
++}
++#else
++#include <asm/unaligned.h>
++
++static inline u32 INIT get_unaligned_le32(void *p)
++{
++      return le32_to_cpu(__get_unaligned(p, 4));
++}
++
++static inline void INIT put_unaligned_le32(u32 val, void *p)
++{
++      __put_unaligned(cpu_to_le32(val), p, 4);
++}
++#endif
++
++#define false 0
++#define true 1
++
++/**
++ * enum xz_mode - Operation mode
++ *
++ * @XZ_SINGLE:              Single-call mode. This uses less RAM than
++ *                          than multi-call modes, because the LZMA2
++ *                          dictionary doesn't need to be allocated as
++ *                          part of the decoder state. All required data
++ *                          structures are allocated at initialization,
++ *                          so xz_dec_run() cannot return XZ_MEM_ERROR.
++ * @XZ_PREALLOC:            Multi-call mode with preallocated LZMA2
++ *                          dictionary buffer. All data structures are
++ *                          allocated at initialization, so xz_dec_run()
++ *                          cannot return XZ_MEM_ERROR.
++ * @XZ_DYNALLOC:            Multi-call mode. The LZMA2 dictionary is
++ *                          allocated once the required size has been
++ *                          parsed from the stream headers. If the
++ *                          allocation fails, xz_dec_run() will return
++ *                          XZ_MEM_ERROR.
++ *
++ * It is possible to enable support only for a subset of the above
++ * modes at compile time by defining XZ_DEC_SINGLE, XZ_DEC_PREALLOC,
++ * or XZ_DEC_DYNALLOC. The xz_dec kernel module is always compiled
++ * with support for all operation modes, but the preboot code may
++ * be built with fewer features to minimize code size.
++ */
++enum xz_mode {
++      XZ_SINGLE,
++      XZ_PREALLOC,
++      XZ_DYNALLOC
++};
++
++/**
++ * enum xz_ret - Return codes
++ * @XZ_OK:                  Everything is OK so far. More input or more
++ *                          output space is required to continue. This
++ *                          return code is possible only in multi-call mode
++ *                          (XZ_PREALLOC or XZ_DYNALLOC).
++ * @XZ_STREAM_END:          Operation finished successfully.
++ * @XZ_UNSUPPORTED_CHECK:   Integrity check type is not supported. Decoding
++ *                          is still possible in multi-call mode by simply
++ *                          calling xz_dec_run() again.
++ *                          Note that this return value is used only if
++ *                          XZ_DEC_ANY_CHECK was defined at build time,
++ *                          which is not used in the kernel. Unsupported
++ *                          check types return XZ_OPTIONS_ERROR if
++ *                          XZ_DEC_ANY_CHECK was not defined at build time.
++ * @XZ_MEM_ERROR:           Allocating memory failed. This return code is
++ *                          possible only if the decoder was initialized
++ *                          with XZ_DYNALLOC. The amount of memory that was
++ *                          tried to be allocated was no more than the
++ *                          dict_max argument given to xz_dec_init().
++ * @XZ_MEMLIMIT_ERROR:      A bigger LZMA2 dictionary would be needed than
++ *                          allowed by the dict_max argument given to
++ *                          xz_dec_init(). This return value is possible
++ *                          only in multi-call mode (XZ_PREALLOC or
++ *                          XZ_DYNALLOC); the single-call mode (XZ_SINGLE)
++ *                          ignores the dict_max argument.
++ * @XZ_FORMAT_ERROR:        File format was not recognized (wrong magic
++ *                          bytes).
++ * @XZ_OPTIONS_ERROR:       This implementation doesn't support the requested
++ *                          compression options. In the decoder this means
++ *                          that the header CRC32 matches, but the header
++ *                          itself specifies something that we don't support.
++ * @XZ_DATA_ERROR:          Compressed data is corrupt.
++ * @XZ_BUF_ERROR:           Cannot make any progress. Details are slightly
++ *                          different between multi-call and single-call
++ *                          mode; more information below.
++ *
++ * In multi-call mode, XZ_BUF_ERROR is returned when two consecutive calls
++ * to XZ code cannot consume any input and cannot produce any new output.
++ * This happens when there is no new input available, or the output buffer
++ * is full while at least one output byte is still pending. Assuming your
++ * code is not buggy, you can get this error only when decoding a compressed
++ * stream that is truncated or otherwise corrupt.
++ *
++ * In single-call mode, XZ_BUF_ERROR is returned only when the output buffer
++ * is too small or the compressed input is corrupt in a way that makes the
++ * decoder produce more output than the caller expected. When it is
++ * (relatively) clear that the compressed input is truncated, XZ_DATA_ERROR
++ * is used instead of XZ_BUF_ERROR.
++ */
++enum xz_ret {
++      XZ_OK,
++      XZ_STREAM_END,
++      XZ_UNSUPPORTED_CHECK,
++      XZ_MEM_ERROR,
++      XZ_MEMLIMIT_ERROR,
++      XZ_FORMAT_ERROR,
++      XZ_OPTIONS_ERROR,
++      XZ_DATA_ERROR,
++      XZ_BUF_ERROR
++};
++
++/**
++ * struct xz_buf - Passing input and output buffers to XZ code
++ * @in:         Beginning of the input buffer. This may be NULL if and only
++ *              if in_pos is equal to in_size.
++ * @in_pos:     Current position in the input buffer. This must not exceed
++ *              in_size.
++ * @in_size:    Size of the input buffer
++ * @out:        Beginning of the output buffer. This may be NULL if and only
++ *              if out_pos is equal to out_size.
++ * @out_pos:    Current position in the output buffer. This must not exceed
++ *              out_size.
++ * @out_size:   Size of the output buffer
++ *
++ * Only the contents of the output buffer from out[out_pos] onward, and
++ * the variables in_pos and out_pos are modified by the XZ code.
++ */
++struct xz_buf {
++      const uint8_t *in;
++      size_t in_pos;
++      size_t in_size;
++
++      uint8_t *out;
++      size_t out_pos;
++      size_t out_size;
++};
++
++/**
++ * struct xz_dec - Opaque type to hold the XZ decoder state
++ */
++struct xz_dec;
++
++/* If no specific decoding mode is requested, enable support for all modes. */
++#if !defined(XZ_DEC_SINGLE) && !defined(XZ_DEC_PREALLOC) \
++              && !defined(XZ_DEC_DYNALLOC)
++#     define XZ_DEC_SINGLE
++#     define XZ_DEC_PREALLOC
++#     define XZ_DEC_DYNALLOC
++#endif
++
++/*
++ * The DEC_IS_foo(mode) macros are used in "if" statements. If only some
++ * of the supported modes are enabled, these macros will evaluate to true or
++ * false at compile time and thus allow the compiler to omit unneeded code.
++ */
++#ifdef XZ_DEC_SINGLE
++#     define DEC_IS_SINGLE(mode) ((mode) == XZ_SINGLE)
++#else
++#     define DEC_IS_SINGLE(mode) (false)
++#endif
++
++#ifdef XZ_DEC_PREALLOC
++#     define DEC_IS_PREALLOC(mode) ((mode) == XZ_PREALLOC)
++#else
++#     define DEC_IS_PREALLOC(mode) (false)
++#endif
++
++#ifdef XZ_DEC_DYNALLOC
++#     define DEC_IS_DYNALLOC(mode) ((mode) == XZ_DYNALLOC)
++#else
++#     define DEC_IS_DYNALLOC(mode) (false)
++#endif
++
++#if !defined(XZ_DEC_SINGLE)
++#     define DEC_IS_MULTI(mode) (true)
++#elif defined(XZ_DEC_PREALLOC) || defined(XZ_DEC_DYNALLOC)
++#     define DEC_IS_MULTI(mode) ((mode) != XZ_SINGLE)
++#else
++#     define DEC_IS_MULTI(mode) (false)
++#endif
++
++/*
++ * If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ.
++ * XZ_DEC_BCJ is used to enable generic support for BCJ decoders.
++ */
++#ifndef XZ_DEC_BCJ
++#     if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \
++                      || defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
++                      || defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
++                      || defined(XZ_DEC_SPARC)
++#             define XZ_DEC_BCJ
++#     endif
++#endif
++
++/*
++ * Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used
++ * before calling xz_dec_lzma2_run().
++ */
++XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
++                                                 uint32_t dict_max);
++
++/*
++ * Decode the LZMA2 properties (one byte) and reset the decoder. Return
++ * XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not
++ * big enough, and XZ_OPTIONS_ERROR if props indicates something that this
++ * decoder doesn't support.
++ */
++XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s,
++                                       uint8_t props);
++
++/* Decode raw LZMA2 stream from b->in to b->out. */
++XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
++                                     struct xz_buf *b);
++
++/* Free the memory allocated for the LZMA2 decoder. */
++XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s);
++
++#ifdef XZ_DEC_BCJ
++/*
++ * Allocate memory for BCJ decoders. xz_dec_bcj_reset() must be used before
++ * calling xz_dec_bcj_run().
++ */
++XZ_EXTERN struct xz_dec_bcj *xz_dec_bcj_create(bool_t single_call);
++
++/*
++ * Decode the Filter ID of a BCJ filter. This implementation doesn't
++ * support custom start offsets, so no decoding of Filter Properties
++ * is needed. Returns XZ_OK if the given Filter ID is supported.
++ * Otherwise XZ_OPTIONS_ERROR is returned.
++ */
++XZ_EXTERN enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id);
++
++/*
++ * Decode raw BCJ + LZMA2 stream. This must be used only if there actually is
++ * a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run()
++ * must be called directly.
++ */
++XZ_EXTERN enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
++                                   struct xz_dec_lzma2 *lzma2,
++                                   struct xz_buf *b);
++
++/* Free the memory allocated for the BCJ filters. */
++#define xz_dec_bcj_end(s) free(s)
++#endif
++
++#endif
+diff --git a/xen/common/xz/stream.h b/xen/common/xz/stream.h
+new file mode 100644
+--- /dev/null
++++ b/xen/common/xz/stream.h
+@@ -0,0 +1,55 @@
++/*
++ * Definitions for handling the .xz file format
++ *
++ * Author: Lasse Collin <lasse.collin@tukaani.org>
++ *
++ * This file has been put into the public domain.
++ * You can do whatever you want with this file.
++ */
++
++#ifndef XZ_STREAM_H
++#define XZ_STREAM_H
++
++/*
++ * See the .xz file format specification at
++ * http://tukaani.org/xz/xz-file-format.txt
++ * to understand the container format.
++ */
++
++#define STREAM_HEADER_SIZE 12
++
++#define HEADER_MAGIC "\3757zXZ"
++#define HEADER_MAGIC_SIZE 6
++
++#define FOOTER_MAGIC "YZ"
++#define FOOTER_MAGIC_SIZE 2
++
++/*
++ * Variable-length integer can hold a 63-bit unsigned integer or a special
++ * value indicating that the value is unknown.
++ *
++ * Experimental: vli_type can be defined to uint32_t to save a few bytes
++ * in code size (no effect on speed). Doing so limits the uncompressed and
++ * compressed size of the file to less than 256 MiB and may also weaken
++ * error detection slightly.
++ */
++typedef uint64_t vli_type;
++
++#define VLI_MAX ((vli_type)-1 / 2)
++#define VLI_UNKNOWN ((vli_type)-1)
++
++/* Maximum encoded size of a VLI */
++#define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7)
++
++/* Integrity Check types */
++enum xz_check {
++      XZ_CHECK_NONE = 0,
++      XZ_CHECK_CRC32 = 1,
++      XZ_CHECK_CRC64 = 4,
++      XZ_CHECK_SHA256 = 10
++};
++
++/* Maximum possible Check ID */
++#define XZ_CHECK_MAX 15
++
++#endif
+diff --git a/xen/include/xen/decompress.h b/xen/include/xen/decompress.h
+--- a/xen/include/xen/decompress.h
++++ b/xen/include/xen/decompress.h
+@@ -31,7 +31,7 @@
+  * dependent).
+  */
+-decompress_fn bunzip2, unlzma, unlzo;
++decompress_fn bunzip2, unxz, unlzma, unlzo;
+ int decompress(void *inbuf, unsigned int len, void *outbuf);
\ No newline at end of file
index 302504b146a981253e7960a54e7d2197fcc389c2..7d8b806ace99e2dc18f85562274348050b3647ae 100644 (file)
--- a/xen.spec
+++ b/xen.spec
@@ -11,7 +11,7 @@ Summary:      Xen - a virtual machine monitor
 Summary(pl.UTF-8):     Xen - monitor maszyny wirtualnej
 Name:          xen
 Version:       4.1.2
-Release:       0.2
+Release:       0.3
 License:       GPL
 Group:         Applications/System
 Source0:       http://bits.xensource.com/oss-xen/release/%{version}/%{name}-%{version}.tar.gz
@@ -35,6 +35,7 @@ Patch0:               %{name}-python_scripts.patch
 Patch1:                %{name}-symbols.patch
 Patch2:                %{name}-curses.patch
 Patch3:                %{name}-gcc.patch
+Patch4:                %{name}-xz.patch
 URL:           http://www.cl.cam.ac.uk/Research/SRG/netos/xen/index.html
 BuildRequires: SDL-devel
 %{?with_hvm:BuildRequires:     bcc}
@@ -189,6 +190,7 @@ This package provides bash-completion for xen.
 %patch1 -p1
 %patch2 -p1
 #%%patch3 -p1
+%patch4 -p1
 
 %{__rm} -v tools/check/*.orig
 
This page took 0.184244 seconds and 4 git commands to generate.