]> git.pld-linux.org Git - packages/dietlibc.git/blame - dietlibc-divrem.m4
- pentium 3/4 support.
[packages/dietlibc.git] / dietlibc-divrem.m4
CommitLineData
58cfc4f2
JB
1/*
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * from: Header: divrem.m4,v 1.4 92/06/25 13:23:57 torek Exp
38 * $NetBSD: divrem.m4,v 1.4 1997/10/09 10:07:54 lukem Exp $
39 */
40
41/*
42 * Division and remainder, from Appendix E of the Sparc Version 8
43 * Architecture Manual, with fixes from Gordon Irlam.
44 */
45
46#if defined(LIBC_SCCS) && !defined(lint)
47 .asciz "@(#)divrem.m4 8.1 (Berkeley) 6/4/93"
48#endif /* LIBC_SCCS and not lint */
49
50/*
51 * Input: dividend and divisor in %o0 and %o1 respectively.
52 *
53 * m4 parameters:
54 * NAME name of function to generate
55 * OP OP=div => %o0 / %o1; OP=rem => %o0 % %o1
56 * S S=true => signed; S=false => unsigned
57 *
58 * Algorithm parameters:
59 * N how many bits per iteration we try to get (4)
60 * WORDSIZE total number of bits (32)
61 *
62 * Derived constants:
63 * TWOSUPN 2^N, for label generation (m4 exponentiation currently broken)
64 * TOPBITS number of bits in the top `decade' of a number
65 *
66 * Important variables:
67 * Q the partial quotient under development (initially 0)
68 * R the remainder so far, initially the dividend
69 * ITER number of main division loop iterations required;
70 * equal to ceil(log2(quotient) / N). Note that this
71 * is the log base (2^N) of the quotient.
72 * V the current comparand, initially divisor*2^(ITER*N-1)
73 *
74 * Cost:
75 * Current estimate for non-large dividend is
76 * ceil(log2(quotient) / N) * (10 + 7N/2) + C
77 * A large dividend is one greater than 2^(31-TOPBITS) and takes a
78 * different path, as the upper bits of the quotient must be developed
79 * one bit at a time.
80 */
81
82define(N, `4')
83define(TWOSUPN, `16')
84define(WORDSIZE, `32')
85define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N)))
86
87define(dividend, `%o0')
88define(divisor, `%o1')
89define(Q, `%o2')
90define(R, `%o3')
91define(ITER, `%o4')
92define(V, `%o5')
93
94/* m4 reminder: ifelse(a,b,c,d) => if a is b, then c, else d */
95define(T, `%g1')
96define(SC, `%g7')
97ifelse(S, `true', `define(SIGN, `%g6')')
98
99/*
100 * This is the recursive definition for developing quotient digits.
101 *
102 * Parameters:
103 * $1 the current depth, 1 <= $1 <= N
104 * $2 the current accumulation of quotient bits
105 * N max depth
106 *
107 * We add a new bit to $2 and either recurse or insert the bits in
108 * the quotient. R, Q, and V are inputs and outputs as defined above;
109 * the condition codes are expected to reflect the input R, and are
110 * modified to reflect the output R.
111 */
112define(DEVELOP_QUOTIENT_BITS,
113` ! depth $1, accumulated bits $2
114 bl L.$1.eval(TWOSUPN+$2)
115 srl V,1,V
116 ! remainder is positive
117 subcc R,V,R
118 ifelse($1, N,
119 ` b 9f
120 add Q, ($2*2+1), Q
121 ', ` DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2+1)')')
122L.$1.eval(TWOSUPN+$2):
123 ! remainder is negative
124 addcc R,V,R
125 ifelse($1, N,
126 ` b 9f
127 add Q, ($2*2-1), Q
128 ', ` DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2-1)')')
129 ifelse($1, 1, `9:')')
130
131#define C_LABEL(name) name:
132
133#define C_SYMBOL_NAME(name) name
134
135#define ENTRY(name) \
136 .global C_SYMBOL_NAME(name); \
137 .align 4;\
138 C_LABEL(name);\
139 .type name,@function;
140
141#define END(name) \
142 .size name, . - name
143
144#define ST_DIV0 0x02
145
146
147ENTRY(NAME)
148ifelse(S, `true',
149` ! compute sign of result; if neither is negative, no problem
150 orcc divisor, dividend, %g0 ! either negative?
151 bge 2f ! no, go do the divide
152 ifelse(OP, `div',
153 `xor divisor, dividend, SIGN',
154 `mov dividend, SIGN') ! compute sign in any case
155 tst divisor
156 bge 1f
157 tst dividend
158 ! divisor is definitely negative; dividend might also be negative
159 bge 2f ! if dividend not negative...
160 neg divisor ! in any case, make divisor nonneg
1611: ! dividend is negative, divisor is nonnegative
162 neg dividend ! make dividend nonnegative
1632:
164')
165 ! Ready to divide. Compute size of quotient; scale comparand.
166 orcc divisor, %g0, V
167 bnz 1f
168 mov dividend, R
169
170 ! Divide by zero trap. If it returns, return 0 (about as
171 ! wrong as possible, but that is what SunOS does...).
172 t ST_DIV0
173 retl
174 clr %o0
175
1761:
177 cmp R, V ! if divisor exceeds dividend, done
178 blu Lgot_result ! (and algorithm fails otherwise)
179 clr Q
180 sethi %hi(1 << (WORDSIZE - TOPBITS - 1)), T
181 cmp R, T
182 blu Lnot_really_big
183 clr ITER
184
185 ! `Here the dividend is >= 2^(31-N) or so. We must be careful here,
186 ! as our usual N-at-a-shot divide step will cause overflow and havoc.
187 ! The number of bits in the result here is N*ITER+SC, where SC <= N.
188 ! Compute ITER in an unorthodox manner: know we need to shift V into
189 ! the top decade: so do not even bother to compare to R.'
190 1:
191 cmp V, T
192 bgeu 3f
193 mov 1, SC
194 sll V, N, V
195 b 1b
196 inc ITER
197
198 ! Now compute SC.
199 2: addcc V, V, V
200 bcc Lnot_too_big
201 inc SC
202
203 ! We get here if the divisor overflowed while shifting.
204 ! This means that R has the high-order bit set.
205 ! Restore V and subtract from R.
206 sll T, TOPBITS, T ! high order bit
207 srl V, 1, V ! rest of V
208 add V, T, V
209 b Ldo_single_div
210 dec SC
211
212 Lnot_too_big:
213 3: cmp V, R
214 blu 2b
215 nop
216 be Ldo_single_div
217 nop
218 /* NB: these are commented out in the V8-Sparc manual as well */
219 /* (I do not understand this) */
220 ! V > R: went too far: back up 1 step
221 ! srl V, 1, V
222 ! dec SC
223 ! do single-bit divide steps
224 !
225 ! We have to be careful here. We know that R >= V, so we can do the
226 ! first divide step without thinking. BUT, the others are conditional,
227 ! and are only done if R >= 0. Because both R and V may have the high-
228 ! order bit set in the first step, just falling into the regular
229 ! division loop will mess up the first time around.
230 ! So we unroll slightly...
231 Ldo_single_div:
232 deccc SC
233 bl Lend_regular_divide
234 nop
235 sub R, V, R
236 mov 1, Q
237 b Lend_single_divloop
238 nop
239 Lsingle_divloop:
240 sll Q, 1, Q
241 bl 1f
242 srl V, 1, V
243 ! R >= 0
244 sub R, V, R
245 b 2f
246 inc Q
247 1: ! R < 0
248 add R, V, R
249 dec Q
250 2:
251 Lend_single_divloop:
252 deccc SC
253 bge Lsingle_divloop
254 tst R
255 b,a Lend_regular_divide
256
257Lnot_really_big:
2581:
259 sll V, N, V
260 cmp V, R
261 bleu 1b
262 inccc ITER
263 be Lgot_result
264 dec ITER
265
266 tst R ! set up for initial iteration
267Ldivloop:
268 sll Q, N, Q
269 DEVELOP_QUOTIENT_BITS(1, 0)
270Lend_regular_divide:
271 deccc ITER
272 bge Ldivloop
273 tst R
274 bl,a Lgot_result
275 ! non-restoring fixup here (one instruction only!)
276ifelse(OP, `div',
277` dec Q
278', ` add R, divisor, R
279')
280
281Lgot_result:
282ifelse(S, `true',
283` ! check to see if answer should be < 0
284 tst SIGN
285 bl,a 1f
286 ifelse(OP, `div', `neg Q', `neg R')
2871:')
288 retl
289 ifelse(OP, `div', `mov Q, %o0', `mov R, %o0')
290
291END(NAME)
This page took 0.094085 seconds and 4 git commands to generate.