]> git.pld-linux.org Git - packages/kernel.git/blob - kernel-bzip2-lzma.patch
- fix build with glibc 2.10
[packages/kernel.git] / kernel-bzip2-lzma.patch
1 diff -urNp linux-2.6.27.orig/arch/x86/boot/compressed/Makefile linux-2.6.27/arch/x86/boot/compressed/Makefile
2 --- linux-2.6.27.orig/arch/x86/boot/compressed/Makefile 2008-10-29 08:48:23.000000000 +0100
3 +++ linux-2.6.27/arch/x86/boot/compressed/Makefile      2008-10-30 22:30:21.000000000 +0100
4 @@ -4,7 +4,7 @@
5  # create a compressed vmlinux image from the original vmlinux
6  #
7  
8 -targets := vmlinux vmlinux.bin vmlinux.bin.gz head_$(BITS).o misc.o piggy.o
9 +targets := vmlinux vmlinux.bin vmlinux.bin.gz vmlinux.bin.bz2 vmlinux.bin.lzma head_$(BITS).o misc.o piggy.o
10  
11  KBUILD_CFLAGS := -m$(BITS) -D__KERNEL__ $(LINUX_INCLUDE) -O2
12  KBUILD_CFLAGS += -fno-strict-aliasing -fPIC
13 @@ -46,9 +46,17 @@ $(obj)/vmlinux.bin.all: $(vmlinux.bin.al
14  ifdef CONFIG_RELOCATABLE
15  $(obj)/vmlinux.bin.gz: $(obj)/vmlinux.bin.all FORCE
16         $(call if_changed,gzip)
17 +$(obj)/vmlinux.bin.bz2: $(obj)/vmlinux.bin.all FORCE
18 +       $(call if_changed,bzip2)
19 +$(obj)/vmlinux.bin.lzma: $(obj)/vmlinux.bin.all FORCE
20 +       $(call if_changed,lzma)
21  else
22  $(obj)/vmlinux.bin.gz: $(obj)/vmlinux.bin FORCE
23         $(call if_changed,gzip)
24 +$(obj)/vmlinux.bin.bz2: $(obj)/vmlinux.bin FORCE
25 +       $(call if_changed,bzip2)
26 +$(obj)/vmlinux.bin.lzma: $(obj)/vmlinux.bin FORCE
27 +       $(call if_changed,lzma)
28  endif
29  LDFLAGS_piggy.o := -r --format binary --oformat elf32-i386 -T
30  
31 @@ -56,9 +64,17 @@ else
32  $(obj)/vmlinux.bin.gz: $(obj)/vmlinux.bin FORCE
33         $(call if_changed,gzip)
34  
35 +$(obj)/vmlinux.bin.bz2: $(obj)/vmlinux.bin FORCE
36 +       $(call if_changed,bzip2)
37 +$(obj)/vmlinux.bin.lzma: $(obj)/vmlinux.bin FORCE
38 +       $(call if_changed,lzma)
39  LDFLAGS_piggy.o := -r --format binary --oformat elf64-x86-64 -T
40  endif
41  
42  
43 -$(obj)/piggy.o: $(obj)/vmlinux.scr $(obj)/vmlinux.bin.gz FORCE
44 +suffix_$(CONFIG_KERNEL_GZIP)  = gz
45 +suffix_$(CONFIG_KERNEL_BZIP2) = bz2
46 +suffix_$(CONFIG_KERNEL_LZMA)  = lzma
47 +
48 +$(obj)/piggy.o: $(obj)/vmlinux.scr $(obj)/vmlinux.bin.$(suffix_y) FORCE
49         $(call if_changed,ld)
50 diff -urNp linux-2.6.27.orig/arch/x86/boot/compressed/misc.c linux-2.6.27/arch/x86/boot/compressed/misc.c
51 --- linux-2.6.27.orig/arch/x86/boot/compressed/misc.c   2008-10-29 08:48:23.000000000 +0100
52 +++ linux-2.6.27/arch/x86/boot/compressed/misc.c        2008-10-30 22:27:54.000000000 +0100
53 @@ -116,71 +116,13 @@
54  /*
55   * gzip declarations
56   */
57 -
58 -#define OF(args)       args
59  #define STATIC         static
60  
61  #undef memset
62  #undef memcpy
63  #define memzero(s, n)  memset((s), 0, (n))
64  
65 -typedef unsigned char  uch;
66 -typedef unsigned short ush;
67 -typedef unsigned long  ulg;
68 -
69 -/*
70 - * Window size must be at least 32k, and a power of two.
71 - * We don't actually have a window just a huge output buffer,
72 - * so we report a 2G window size, as that should always be
73 - * larger than our output buffer:
74 - */
75 -#define WSIZE          0x80000000
76 -
77 -/* Input buffer: */
78 -static unsigned char   *inbuf;
79 -
80 -/* Sliding window buffer (and final output buffer): */
81 -static unsigned char   *window;
82  
83 -/* Valid bytes in inbuf: */
84 -static unsigned                insize;
85 -
86 -/* Index of next byte to be processed in inbuf: */
87 -static unsigned                inptr;
88 -
89 -/* Bytes in output buffer: */
90 -static unsigned                outcnt;
91 -
92 -/* gzip flag byte */
93 -#define ASCII_FLAG     0x01 /* bit 0 set: file probably ASCII text */
94 -#define CONTINUATION   0x02 /* bit 1 set: continuation of multi-part gz file */
95 -#define EXTRA_FIELD    0x04 /* bit 2 set: extra field present */
96 -#define ORIG_NAM       0x08 /* bit 3 set: original file name present */
97 -#define COMMENT                0x10 /* bit 4 set: file comment present */
98 -#define ENCRYPTED      0x20 /* bit 5 set: file is encrypted */
99 -#define RESERVED       0xC0 /* bit 6, 7:  reserved */
100 -
101 -#define get_byte()     (inptr < insize ? inbuf[inptr++] : fill_inbuf())
102 -
103 -/* Diagnostic functions */
104 -#ifdef DEBUG
105 -#  define Assert(cond, msg) do { if (!(cond)) error(msg); } while (0)
106 -#  define Trace(x)     do { fprintf x; } while (0)
107 -#  define Tracev(x)    do { if (verbose) fprintf x ; } while (0)
108 -#  define Tracevv(x)   do { if (verbose > 1) fprintf x ; } while (0)
109 -#  define Tracec(c, x) do { if (verbose && (c)) fprintf x ; } while (0)
110 -#  define Tracecv(c, x)        do { if (verbose > 1 && (c)) fprintf x ; } while (0)
111 -#else
112 -#  define Assert(cond, msg)
113 -#  define Trace(x)
114 -#  define Tracev(x)
115 -#  define Tracevv(x)
116 -#  define Tracec(c, x)
117 -#  define Tracecv(c, x)
118 -#endif
119 -
120 -static int  fill_inbuf(void);
121 -static void flush_window(void);
122  static void error(char *m);
123  
124  /*
125 @@ -189,11 +131,6 @@ static void error(char *m);
126  static struct boot_params *real_mode;          /* Pointer to real-mode data */
127  static int quiet;
128  
129 -extern unsigned char input_data[];
130 -extern int input_len;
131 -
132 -static long bytes_out;
133 -
134  static void *memset(void *s, int c, unsigned n);
135  static void *memcpy(void *dest, const void *src, unsigned n);
136  
137 @@ -213,7 +150,17 @@ static char *vidmem;
138  static int vidport;
139  static int lines, cols;
140  
141 +#ifdef CONFIG_KERNEL_GZIP
142  #include "../../../../lib/inflate.c"
143 +#endif
144 +
145 +#ifdef CONFIG_KERNEL_BZIP2
146 +#include "../../../../lib/decompress_bunzip2.c"
147 +#endif
148 +
149 +#ifdef CONFIG_KERNEL_LZMA
150 +#include "../../../../lib/decompress_unlzma.c"
151 +#endif
152  
153  static void scroll(void)
154  {
155 @@ -291,38 +238,6 @@ static void *memcpy(void *dest, const vo
156         return dest;
157  }
158  
159 -/* ===========================================================================
160 - * Fill the input buffer. This is called only when the buffer is empty
161 - * and at least one byte is really needed.
162 - */
163 -static int fill_inbuf(void)
164 -{
165 -       error("ran out of input data");
166 -       return 0;
167 -}
168 -
169 -/* ===========================================================================
170 - * Write the output window window[0..outcnt-1] and update crc and bytes_out.
171 - * (Used for the decompressed data only.)
172 - */
173 -static void flush_window(void)
174 -{
175 -       /* With my window equal to my output buffer
176 -        * I only need to compute the crc here.
177 -        */
178 -       unsigned long c = crc;         /* temporary variable */
179 -       unsigned n;
180 -       unsigned char *in, ch;
181 -
182 -       in = window;
183 -       for (n = 0; n < outcnt; n++) {
184 -               ch = *in++;
185 -               c = crc_32_tab[((int)c ^ ch) & 0xff] ^ (c >> 8);
186 -       }
187 -       crc = c;
188 -       bytes_out += (unsigned long)outcnt;
189 -       outcnt = 0;
190 -}
191  
192  static void error(char *x)
193  {
194 @@ -405,12 +320,8 @@ asmlinkage void decompress_kernel(void *
195         lines = real_mode->screen_info.orig_video_lines;
196         cols = real_mode->screen_info.orig_video_cols;
197  
198 -       window = output;                /* Output buffer (Normally at 1M) */
199         free_mem_ptr     = heap;        /* Heap */
200         free_mem_end_ptr = heap + BOOT_HEAP_SIZE;
201 -       inbuf  = input_data;            /* Input buffer */
202 -       insize = input_len;
203 -       inptr  = 0;
204  
205  #ifdef CONFIG_X86_64
206         if ((unsigned long)output & (__KERNEL_ALIGN - 1))
207 @@ -428,10 +339,9 @@ asmlinkage void decompress_kernel(void *
208  #endif
209  #endif
210  
211 -       makecrc();
212         if (!quiet)
213                 putstr("\nDecompressing Linux... ");
214 -       gunzip();
215 +       decompress(input_data, input_len, NULL, NULL, output, NULL, error);
216         parse_elf(output);
217         if (!quiet)
218                 putstr("done.\nBooting the kernel.\n");
219 diff -urNp linux-2.6.27.orig/drivers/block/Kconfig linux-2.6.27/drivers/block/Kconfig
220 --- linux-2.6.27.orig/drivers/block/Kconfig     2008-10-29 08:48:02.000000000 +0100
221 +++ linux-2.6.27/drivers/block/Kconfig  2008-10-30 22:27:34.000000000 +0100
222 @@ -357,6 +357,30 @@ config BLK_DEV_XIP
223           will prevent RAM block device backing store memory from being
224           allocated from highmem (only a problem for highmem systems).
225  
226 +config RD_BZIP2
227 +       bool "Initial ramdisk compressed using bzip2"
228 +       default n
229 +       depends on BLK_DEV_INITRD=y
230 +       help
231 +         Support loading of a bzip2 encoded initial ramdisk or cpio buffer
232 +         If unsure, say N.
233 +
234 +config RD_LZMA
235 +       bool "Initial ramdisk compressed using lzma"
236 +       default n
237 +       depends on BLK_DEV_INITRD=y
238 +       help
239 +         Support loading of a lzma encoded initial ramdisk or cpio buffer
240 +         If unsure, say N.
241 +
242 +config RD_GZIP
243 +       bool "Initial ramdisk compressed using gzip"
244 +       default y
245 +       depends on BLK_DEV_INITRD=y
246 +       help
247 +         Support loading of a gzip encoded initial ramdisk or cpio buffer.
248 +         If unsure, say Y.
249 +
250  config CDROM_PKTCDVD
251         tristate "Packet writing on CD/DVD media"
252         depends on !UML
253 diff -urNp linux-2.6.27.orig/include/asm-x86/boot.h linux-2.6.27/include/asm-x86/boot.h
254 --- linux-2.6.27.orig/include/asm-x86/boot.h    2008-10-29 08:47:54.000000000 +0100
255 +++ linux-2.6.27/include/asm-x86/boot.h 2008-10-30 22:27:38.000000000 +0100
256 @@ -17,11 +17,21 @@
257                                 + (CONFIG_PHYSICAL_ALIGN - 1)) \
258                                 & ~(CONFIG_PHYSICAL_ALIGN - 1))
259  
260 +#if (defined CONFIG_KERNEL_BZIP2)
261 +#define BOOT_HEAP_SIZE             0x400000
262 +#else
263 +
264  #ifdef CONFIG_X86_64
265  #define BOOT_HEAP_SIZE 0x7000
266 -#define BOOT_STACK_SIZE        0x4000
267  #else
268  #define BOOT_HEAP_SIZE 0x4000
269 +#endif
270 +
271 +#endif
272 +
273 +#ifdef CONFIG_X86_64
274 +#define BOOT_STACK_SIZE        0x4000
275 +#else
276  #define BOOT_STACK_SIZE        0x1000
277  #endif
278  
279 diff -urNp linux-2.6.27.orig/include/linux/decompress/bunzip2.h linux-2.6.27/include/linux/decompress/bunzip2.h
280 --- linux-2.6.27.orig/include/linux/decompress/bunzip2.h        1970-01-01 01:00:00.000000000 +0100
281 +++ linux-2.6.27/include/linux/decompress/bunzip2.h     2008-10-30 22:27:29.000000000 +0100
282 @@ -0,0 +1,10 @@
283 +#ifndef DECOMPRESS_BUNZIP2_H
284 +#define DECOMPRESS_BUNZIP2_H
285 +
286 +int bunzip2(unsigned char *inbuf, int len,
287 +           int(*fill)(void*, unsigned int),
288 +           int(*flush)(void*, unsigned int),
289 +           unsigned char *output,
290 +           int *pos,
291 +           void(*error)(char *x));
292 +#endif
293 diff -urNp linux-2.6.27.orig/include/linux/decompress/generic.h linux-2.6.27/include/linux/decompress/generic.h
294 --- linux-2.6.27.orig/include/linux/decompress/generic.h        1970-01-01 01:00:00.000000000 +0100
295 +++ linux-2.6.27/include/linux/decompress/generic.h     2008-10-30 22:27:29.000000000 +0100
296 @@ -0,0 +1,30 @@
297 +#ifndef DECOMPRESS_GENERIC_H
298 +#define DECOMPRESS_GENERIC_H
299 +
300 +/* Minimal chunksize to be read.
301 + *Bzip2 prefers at least 4096
302 + *Lzma prefers 0x10000 */
303 +#define COMPR_IOBUF_SIZE       4096
304 +
305 +typedef int (*decompress_fn) (unsigned char *inbuf, int len,
306 +                             int(*fill)(void*, unsigned int),
307 +                             int(*writebb)(void*, unsigned int),
308 +                             unsigned char *output,
309 +                             int *posp,
310 +                             void(*error)(char *x));
311 +
312 +/* inbuf   - input buffer
313 + *len     - len of pre-read data in inbuf
314 + *fill    - function to fill inbuf if empty
315 + *writebb - function to write out outbug
316 + *posp    - if non-null, input position (number of bytes read) will be
317 + *       returned here
318 + *
319 + *If len != 0, the inbuf is initialized (with as much data), and fill
320 + *should not be called
321 + *If len = 0, the inbuf is allocated, but empty. Its size is IOBUF_SIZE
322 + *fill should be called (repeatedly...) to read data, at most IOBUF_SIZE
323 + */
324 +
325 +
326 +#endif
327 diff -urNp linux-2.6.27.orig/include/linux/decompress/inflate.h linux-2.6.27/include/linux/decompress/inflate.h
328 --- linux-2.6.27.orig/include/linux/decompress/inflate.h        1970-01-01 01:00:00.000000000 +0100
329 +++ linux-2.6.27/include/linux/decompress/inflate.h     2008-10-30 22:27:29.000000000 +0100
330 @@ -0,0 +1,13 @@
331 +#ifndef INFLATE_H
332 +#define INFLATE_H
333 +
334 +/* Other housekeeping constants */
335 +#define INBUFSIZ 4096
336 +
337 +int gunzip(unsigned char *inbuf, int len,
338 +          int(*fill)(void*, unsigned int),
339 +          int(*flush)(void*, unsigned int),
340 +          unsigned char *output,
341 +          int *pos,
342 +          void(*error_fn)(char *x));
343 +#endif
344 diff -urNp linux-2.6.27.orig/include/linux/decompress/mm.h linux-2.6.27/include/linux/decompress/mm.h
345 --- linux-2.6.27.orig/include/linux/decompress/mm.h     1970-01-01 01:00:00.000000000 +0100
346 +++ linux-2.6.27/include/linux/decompress/mm.h  2008-10-30 22:27:54.000000000 +0100
347 @@ -0,0 +1,88 @@
348 +/*
349 + * linux/compr_mm.h
350 + *
351 + * Memory management for pre-boot and ramdisk uncompressors
352 + *
353 + * Authors: Alain Knaff <alain@knaff.lu>
354 + *
355 + */
356 +
357 +#ifndef DECOMPR_MM_H
358 +#define DECOMPR_MM_H
359 +
360 +#ifdef STATIC
361 +
362 +/* Code active when included from pre-boot environment: */
363 +
364 +/* A trivial malloc implementation, adapted from
365 + *  malloc by Hannu Savolainen 1993 and Matthias Urlichs 1994
366 + */
367 +static unsigned long malloc_ptr;
368 +static int malloc_count;
369 +
370 +static void *malloc(int size)
371 +{
372 +       void *p;
373 +
374 +       if (size < 0)
375 +               error("Malloc error");
376 +       if (!malloc_ptr)
377 +               malloc_ptr = free_mem_ptr;
378 +
379 +       malloc_ptr = (malloc_ptr + 3) & ~3;     /* Align */
380 +
381 +       p = (void *)malloc_ptr;
382 +       malloc_ptr += size;
383 +
384 +       if (free_mem_end_ptr && malloc_ptr >= free_mem_end_ptr)
385 +               error("Out of memory");
386 +
387 +       malloc_count++;
388 +       return p;
389 +}
390 +
391 +static void free(void *where)
392 +{
393 +       malloc_count--;
394 +       if (!malloc_count)
395 +               malloc_ptr = free_mem_ptr;
396 +}
397 +
398 +#define large_malloc(a) malloc(a)
399 +#define large_free(a) free(a)
400 +
401 +#define set_error_fn(x)
402 +#define panic error
403 +
404 +#define INIT
405 +
406 +#else /* STATIC */
407 +
408 +/* Code active when compiled standalone for use when loading ramdisk: */
409 +
410 +#include <linux/kernel.h>
411 +#include <linux/fs.h>
412 +#include <linux/string.h>
413 +#include <linux/vmalloc.h>
414 +
415 +/* Use defines rather than static inline in order to avoid spurious
416 + * warnings when not needed (indeed large_malloc / large_free are not
417 + * needed by inflate */
418 +
419 +#define malloc(a) kmalloc(a, GFP_KERNEL)
420 +#define free(a) kfree(a)
421 +
422 +#define large_malloc(a) vmalloc(a)
423 +#define large_free(a) vfree(a)
424 +
425 +static void(*error)(char *m);
426 +#define set_error_fn(x) error = x;
427 +
428 +#define INIT __init
429 +#define STATIC
430 +
431 +#include <linux/init.h>
432 +
433 +#endif /* STATIC */
434 +
435 +#endif /* DECOMPR_MM_H */
436 diff -urNp linux-2.6.27.orig/include/linux/decompress/unlzma.h linux-2.6.27/include/linux/decompress/unlzma.h
437 --- linux-2.6.27.orig/include/linux/decompress/unlzma.h 1970-01-01 01:00:00.000000000 +0100
438 +++ linux-2.6.27/include/linux/decompress/unlzma.h      2008-10-30 22:27:29.000000000 +0100
439 @@ -0,0 +1,12 @@
440 +#ifndef DECOMPRESS_UNLZMA_H
441 +#define DECOMPRESS_UNLZMA_H
442 +
443 +int unlzma(unsigned char *, int,
444 +          int(*fill)(void*, unsigned int),
445 +          int(*flush)(void*, unsigned int),
446 +          unsigned char *output,
447 +          int *posp,
448 +          void(*error)(char *x)
449 +       );
450 +
451 +#endif
452 diff -urNp linux-2.6.27.orig/init/do_mounts_rd.c linux-2.6.27/init/do_mounts_rd.c
453 --- linux-2.6.27.orig/init/do_mounts_rd.c       2008-10-29 08:48:10.000000000 +0100
454 +++ linux-2.6.27/init/do_mounts_rd.c    2008-10-30 22:27:34.000000000 +0100
455 @@ -10,6 +10,12 @@
456  
457  #include "do_mounts.h"
458  
459 +#include <linux/decompress/generic.h>
460 +
461 +#include <linux/decompress/bunzip2.h>
462 +#include <linux/decompress/unlzma.h>
463 +#include <linux/decompress/inflate.h>
464 +
465  int __initdata rd_prompt = 1;/* 1 = prompt for RAM disk, 0 = don't prompt */
466  
467  static int __init prompt_ramdisk(char *str)
468 @@ -28,7 +34,7 @@ static int __init ramdisk_start_setup(ch
469  }
470  __setup("ramdisk_start=", ramdisk_start_setup);
471  
472 -static int __init crd_load(int in_fd, int out_fd);
473 +static int __init crd_load(int in_fd, int out_fd, decompress_fn deco);
474  
475  /*
476   * This routine tries to find a RAM disk image to load, and returns the
477 @@ -44,7 +50,7 @@ static int __init crd_load(int in_fd, in
478   *     gzip
479   */
480  static int __init 
481 -identify_ramdisk_image(int fd, int start_block)
482 +identify_ramdisk_image(int fd, int start_block, decompress_fn *decompressor)
483  {
484         const int size = 512;
485         struct minix_super_block *minixsb;
486 @@ -70,6 +76,7 @@ identify_ramdisk_image(int fd, int start
487         sys_lseek(fd, start_block * BLOCK_SIZE, 0);
488         sys_read(fd, buf, size);
489  
490 +#ifdef CONFIG_RD_GZIP
491         /*
492          * If it matches the gzip magic numbers, return -1
493          */
494 @@ -77,9 +84,39 @@ identify_ramdisk_image(int fd, int start
495                 printk(KERN_NOTICE
496                        "RAMDISK: Compressed image found at block %d\n",
497                        start_block);
498 +               *decompressor = gunzip;
499 +               nblocks = 0;
500 +               goto done;
501 +       }
502 +#endif
503 +
504 +#ifdef CONFIG_RD_BZIP2
505 +       /*
506 +        * If it matches the bzip2 magic numbers, return -1
507 +        */
508 +       if (buf[0] == 0x42 && (buf[1] == 0x5a)) {
509 +               printk(KERN_NOTICE
510 +                      "RAMDISK: Bzipped image found at block %d\n",
511 +                      start_block);
512 +               *decompressor = bunzip2;
513                 nblocks = 0;
514                 goto done;
515         }
516 +#endif
517 +
518 +#ifdef CONFIG_RD_LZMA
519 +       /*
520 +        * If it matches the lzma magic numbers, return -1
521 +        */
522 +       if (buf[0] == 0x5d && (buf[1] == 0x00)) {
523 +               printk(KERN_NOTICE
524 +                      "RAMDISK: Lzma image found at block %d\n",
525 +                      start_block);
526 +               *decompressor = unlzma;
527 +               nblocks = 0;
528 +               goto done;
529 +       }
530 +#endif
531  
532         /* romfs is at block zero too */
533         if (romfsb->word0 == ROMSB_WORD0 &&
534 @@ -143,6 +180,7 @@ int __init rd_load_image(char *from)
535         int nblocks, i, disk;
536         char *buf = NULL;
537         unsigned short rotate = 0;
538 +       decompress_fn decompressor = NULL;
539  #if !defined(CONFIG_S390) && !defined(CONFIG_PPC_ISERIES)
540         char rotator[4] = { '|' , '/' , '-' , '\\' };
541  #endif
542 @@ -155,12 +193,12 @@ int __init rd_load_image(char *from)
543         if (in_fd < 0)
544                 goto noclose_input;
545  
546 -       nblocks = identify_ramdisk_image(in_fd, rd_image_start);
547 +       nblocks = identify_ramdisk_image(in_fd, rd_image_start, &decompressor);
548         if (nblocks < 0)
549                 goto done;
550  
551         if (nblocks == 0) {
552 -               if (crd_load(in_fd, out_fd) == 0)
553 +               if (crd_load(in_fd, out_fd, decompressor) == 0)
554                         goto successful_load;
555                 goto done;
556         }
557 @@ -259,138 +297,48 @@ int __init rd_load_disk(int n)
558         return rd_load_image("/dev/root");
559  }
560  
561 -/*
562 - * gzip declarations
563 - */
564 -
565 -#define OF(args)  args
566 -
567 -#ifndef memzero
568 -#define memzero(s, n)     memset ((s), 0, (n))
569 -#endif
570 -
571 -typedef unsigned char  uch;
572 -typedef unsigned short ush;
573 -typedef unsigned long  ulg;
574 -
575 -#define INBUFSIZ 4096
576 -#define WSIZE 0x8000    /* window size--must be a power of two, and */
577 -                       /*  at least 32K for zip's deflate method */
578 -
579 -static uch *inbuf;
580 -static uch *window;
581 -
582 -static unsigned insize;  /* valid bytes in inbuf */
583 -static unsigned inptr;   /* index of next byte to be processed in inbuf */
584 -static unsigned outcnt;  /* bytes in output buffer */
585  static int exit_code;
586 -static int unzip_error;
587 -static long bytes_out;
588 +static int decompress_error;
589  static int crd_infd, crd_outfd;
590  
591 -#define get_byte()  (inptr < insize ? inbuf[inptr++] : fill_inbuf())
592 -               
593 -/* Diagnostic functions (stubbed out) */
594 -#define Assert(cond,msg)
595 -#define Trace(x)
596 -#define Tracev(x)
597 -#define Tracevv(x)
598 -#define Tracec(c,x)
599 -#define Tracecv(c,x)
600 -
601 -#define STATIC static
602 -#define INIT __init
603 -
604 -static int  __init fill_inbuf(void);
605 -static void __init flush_window(void);
606 -static void __init error(char *m);
607 -
608 -#define NO_INFLATE_MALLOC
609 -
610 -#include "../lib/inflate.c"
611 -
612 -/* ===========================================================================
613 - * Fill the input buffer. This is called only when the buffer is empty
614 - * and at least one byte is really needed.
615 - * Returning -1 does not guarantee that gunzip() will ever return.
616 - */
617 -static int __init fill_inbuf(void)
618 +static int __init compr_fill(void *buf, unsigned int len)
619  {
620 -       if (exit_code) return -1;
621 -       
622 -       insize = sys_read(crd_infd, inbuf, INBUFSIZ);
623 -       if (insize == 0) {
624 -               error("RAMDISK: ran out of compressed data");
625 -               return -1;
626 -       }
627 -
628 -       inptr = 1;
629 -
630 -       return inbuf[0];
631 +       int r = sys_read(crd_infd, buf, len);
632 +       if (r < 0)
633 +               printk(KERN_ERR "RAMDISK: error while reading compressed data");
634 +       else if (r == 0)
635 +               printk(KERN_ERR "RAMDISK: EOF while reading compressed data");
636 +       return r;
637  }
638  
639 -/* ===========================================================================
640 - * Write the output window window[0..outcnt-1] and update crc and bytes_out.
641 - * (Used for the decompressed data only.)
642 - */
643 -static void __init flush_window(void)
644 +static int __init compr_flush(void *window, unsigned int outcnt)
645  {
646 -    ulg c = crc;         /* temporary variable */
647 -    unsigned n, written;
648 -    uch *in, ch;
649 -    
650 -    written = sys_write(crd_outfd, window, outcnt);
651 -    if (written != outcnt && unzip_error == 0) {
652 -       printk(KERN_ERR "RAMDISK: incomplete write (%d != %d) %ld\n",
653 -              written, outcnt, bytes_out);
654 -       unzip_error = 1;
655 -    }
656 -    in = window;
657 -    for (n = 0; n < outcnt; n++) {
658 -           ch = *in++;
659 -           c = crc_32_tab[((int)c ^ ch) & 0xff] ^ (c >> 8);
660 -    }
661 -    crc = c;
662 -    bytes_out += (ulg)outcnt;
663 -    outcnt = 0;
664 +       int written = sys_write(crd_outfd, window, outcnt);
665 +       if (written != outcnt) {
666 +               if (decompress_error == 0)
667 +                       printk(KERN_ERR
668 +                              "RAMDISK: incomplete write (%d != %d)\n",
669 +                              written, outcnt);
670 +               decompress_error = 1;
671 +               return -1;
672 +       }
673 +       return outcnt;
674  }
675  
676  static void __init error(char *x)
677  {
678         printk(KERN_ERR "%s\n", x);
679         exit_code = 1;
680 -       unzip_error = 1;
681 +       decompress_error = 1;
682  }
683  
684 -static int __init crd_load(int in_fd, int out_fd)
685 +static int __init crd_load(int in_fd, int out_fd, decompress_fn deco)
686  {
687         int result;
688 -
689 -       insize = 0;             /* valid bytes in inbuf */
690 -       inptr = 0;              /* index of next byte to be processed in inbuf */
691 -       outcnt = 0;             /* bytes in output buffer */
692 -       exit_code = 0;
693 -       bytes_out = 0;
694 -       crc = (ulg)0xffffffffL; /* shift register contents */
695 -
696         crd_infd = in_fd;
697         crd_outfd = out_fd;
698 -       inbuf = kmalloc(INBUFSIZ, GFP_KERNEL);
699 -       if (!inbuf) {
700 -               printk(KERN_ERR "RAMDISK: Couldn't allocate gzip buffer\n");
701 -               return -1;
702 -       }
703 -       window = kmalloc(WSIZE, GFP_KERNEL);
704 -       if (!window) {
705 -               printk(KERN_ERR "RAMDISK: Couldn't allocate gzip window\n");
706 -               kfree(inbuf);
707 -               return -1;
708 -       }
709 -       makecrc();
710 -       result = gunzip();
711 -       if (unzip_error)
712 +       result = deco(NULL, 0, compr_fill, compr_flush, NULL, NULL, error);
713 +       if (decompress_error)
714                 result = 1;
715 -       kfree(inbuf);
716 -       kfree(window);
717         return result;
718  }
719 diff -urNp linux-2.6.27.orig/init/initramfs.c linux-2.6.27/init/initramfs.c
720 --- linux-2.6.27.orig/init/initramfs.c  2008-10-29 08:48:10.000000000 +0100
721 +++ linux-2.6.27/init/initramfs.c       2008-10-30 22:27:34.000000000 +0100
722 @@ -337,11 +337,14 @@ static int __init write_buffer(char *buf
723         return len - count;
724  }
725  
726 -static void __init flush_buffer(char *buf, unsigned len)
727 +
728 +static int __init flush_buffer(void *bufv, unsigned len)
729  {
730 +       char *buf = (char *) bufv;
731         int written;
732 +       int origLen = len;
733         if (message)
734 -               return;
735 +               return -1;
736         while ((written = write_buffer(buf, len)) < len && !message) {
737                 char c = buf[written];
738                 if (c == '0') {
739 @@ -355,73 +358,14 @@ static void __init flush_buffer(char *bu
740                 } else
741                         error("junk in compressed archive");
742         }
743 +       return origLen;
744  }
745  
746 -/*
747 - * gzip declarations
748 - */
749 -
750 -#define OF(args)  args
751 -
752 -#ifndef memzero
753 -#define memzero(s, n)     memset ((s), 0, (n))
754 -#endif
755 +static unsigned my_inptr;   /* index of next byte to be processed in inbuf */
756  
757 -typedef unsigned char  uch;
758 -typedef unsigned short ush;
759 -typedef unsigned long  ulg;
760 -
761 -#define WSIZE 0x8000    /* window size--must be a power of two, and */
762 -                       /*  at least 32K for zip's deflate method */
763 -
764 -static uch *inbuf;
765 -static uch *window;
766 -
767 -static unsigned insize;  /* valid bytes in inbuf */
768 -static unsigned inptr;   /* index of next byte to be processed in inbuf */
769 -static unsigned outcnt;  /* bytes in output buffer */
770 -static long bytes_out;
771 -
772 -#define get_byte()  (inptr < insize ? inbuf[inptr++] : -1)
773 -               
774 -/* Diagnostic functions (stubbed out) */
775 -#define Assert(cond,msg)
776 -#define Trace(x)
777 -#define Tracev(x)
778 -#define Tracevv(x)
779 -#define Tracec(c,x)
780 -#define Tracecv(c,x)
781 -
782 -#define STATIC static
783 -#define INIT __init
784 -
785 -static void __init flush_window(void);
786 -static void __init error(char *m);
787 -
788 -#define NO_INFLATE_MALLOC
789 -
790 -#include "../lib/inflate.c"
791 -
792 -/* ===========================================================================
793 - * Write the output window window[0..outcnt-1] and update crc and bytes_out.
794 - * (Used for the decompressed data only.)
795 - */
796 -static void __init flush_window(void)
797 -{
798 -       ulg c = crc;         /* temporary variable */
799 -       unsigned n;
800 -       uch *in, ch;
801 -
802 -       flush_buffer(window, outcnt);
803 -       in = window;
804 -       for (n = 0; n < outcnt; n++) {
805 -               ch = *in++;
806 -               c = crc_32_tab[((int)c ^ ch) & 0xff] ^ (c >> 8);
807 -       }
808 -       crc = c;
809 -       bytes_out += (ulg)outcnt;
810 -       outcnt = 0;
811 -}
812 +#include <linux/decompress/bunzip2.h>
813 +#include <linux/decompress/unlzma.h>
814 +#include <linux/decompress/inflate.h>
815  
816  static char * __init unpack_to_rootfs(char *buf, unsigned len, int check_only)
817  {
818 @@ -430,9 +374,10 @@ static char * __init unpack_to_rootfs(ch
819         header_buf = kmalloc(110, GFP_KERNEL);
820         symlink_buf = kmalloc(PATH_MAX + N_ALIGN(PATH_MAX) + 1, GFP_KERNEL);
821         name_buf = kmalloc(N_ALIGN(PATH_MAX), GFP_KERNEL);
822 -       window = kmalloc(WSIZE, GFP_KERNEL);
823 -       if (!window || !header_buf || !symlink_buf || !name_buf)
824 +
825 +       if (!header_buf || !symlink_buf || !name_buf)
826                 panic("can't allocate buffers");
827 +
828         state = Start;
829         this_header = 0;
830         message = NULL;
831 @@ -452,21 +397,39 @@ static char * __init unpack_to_rootfs(ch
832                         continue;
833                 }
834                 this_header = 0;
835 -               insize = len;
836 -               inbuf = buf;
837 -               inptr = 0;
838 -               outcnt = 0;             /* bytes in output buffer */
839 -               bytes_out = 0;
840 -               crc = (ulg)0xffffffffL; /* shift register contents */
841 -               makecrc();
842 -               gunzip();
843 +               if (!gunzip(buf, len, NULL, flush_buffer, NULL,
844 +                           &my_inptr, error) &&
845 +                   message == NULL)
846 +                       goto ok;
847 +
848 +#ifdef CONFIG_RD_BZIP2
849 +               message = NULL; /* Zero out message, or else cpio will
850 +                                  think an error has already occured */
851 +               if (!bunzip2(buf, len, NULL, flush_buffer, NULL,
852 +                            &my_inptr, error) < 0
853 +                   &&
854 +                   message == NULL) {
855 +                       goto ok;
856 +               }
857 +#endif
858 +
859 +#ifdef CONFIG_RD_LZMA
860 +               message = NULL; /* Zero out message, or else cpio will
861 +                                  think an error has already occured */
862 +               if (!unlzma(buf, len, NULL, flush_buffer, NULL,
863 +                           &my_inptr, error) < 0
864 +                   &&
865 +                   message == NULL) {
866 +                       goto ok;
867 +               }
868 +#endif
869 +ok:
870                 if (state != Reset)
871 -                       error("junk in gzipped archive");
872 -               this_header = saved_offset + inptr;
873 -               buf += inptr;
874 -               len -= inptr;
875 +                       error("junk in compressed archive");
876 +               this_header = saved_offset + my_inptr;
877 +               buf += my_inptr;
878 +               len -= my_inptr;
879         }
880 -       kfree(window);
881         kfree(name_buf);
882         kfree(symlink_buf);
883         kfree(header_buf);
884 diff -urNp linux-2.6.27.orig/init/Kconfig linux-2.6.27/init/Kconfig
885 --- linux-2.6.27.orig/init/Kconfig      2008-10-29 08:48:10.000000000 +0100
886 +++ linux-2.6.27/init/Kconfig   2008-10-30 22:27:34.000000000 +0100
887 @@ -101,6 +101,56 @@ config LOCALVERSION_AUTO
888  
889           which is done within the script "scripts/setlocalversion".)
890  
891 +choice
892 +        prompt "Kernel compression mode"
893 +        default KERNEL_GZIP
894 +        help
895 +         The linux kernel is a kind of self-extracting executable.
896 +         Several compression algorithms are available, which differ
897 +         in efficiency, compression and decompression speed.
898 +         Compression speed is only relevant when building a kernel.
899 +         Decompression speed is relevant at each boot.
900 +
901 +         If you have any problems with bzip2 or lzma compressed
902 +         kernels, mail me (Alain Knaff) <alain@knaff.lu>. (An older
903 +         version of this functionality (bzip2 only), for 2.4, was
904 +         supplied by Christian Ludwig)
905 +
906 +         High compression options are mostly useful for users, who
907 +         are low on disk space (embedded systems), but for whom ram
908 +         size matters less.
909 +
910 +         If in doubt, select 'gzip'
911 +
912 +config KERNEL_GZIP
913 +       bool "Gzip"
914 +       help
915 +         The old and tried gzip compression. Its compression ratio is
916 +        the poorest among the 3 choices; however its speed (both
917 +        compression and decompression) is the fastest.
918 +
919 +config KERNEL_BZIP2
920 +       bool "Bzip2"
921 +       help
922 +         Its compression ratio and speed is intermediate.
923 +         Decompression speed is slowest among the 3.
924 +         The kernel size is about 10 per cent smaller with bzip2,
925 +         in comparison to gzip.
926 +         Bzip2 uses a large amount of memory. For modern kernels
927 +         you will need at least 8MB RAM or more for booting.
928 +
929 +config KERNEL_LZMA
930 +       bool "LZMA"
931 +       help
932 +         The most recent compression algorithm.
933 +        Its ratio is best, decompression speed is between the other
934 +        2. Compression is slowest.
935 +        The kernel size is about 33 per cent smaller with lzma,
936 +        in comparison to gzip.
937 +
938 +endchoice
939 +
940 +
941  config SWAP
942         bool "Support for paging of anonymous memory (swap)"
943         depends on MMU && BLOCK
944 diff -urNp linux-2.6.27.orig/lib/decompress_bunzip2.c linux-2.6.27/lib/decompress_bunzip2.c
945 --- linux-2.6.27.orig/lib/decompress_bunzip2.c  1970-01-01 01:00:00.000000000 +0100
946 +++ linux-2.6.27/lib/decompress_bunzip2.c       2008-10-30 22:27:29.000000000 +0100
947 @@ -0,0 +1,735 @@
948 +/* vi: set sw = 4 ts = 4: */
949 +/*     Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
950 +
951 +       Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
952 +       which also acknowledges contributions by Mike Burrows, David Wheeler,
953 +       Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
954 +       Robert Sedgewick, and Jon L. Bentley.
955 +
956 +       This code is licensed under the LGPLv2:
957 +               LGPL (http://www.gnu.org/copyleft/lgpl.html
958 +*/
959 +
960 +/*
961 +       Size and speed optimizations by Manuel Novoa III  (mjn3@codepoet.org).
962 +
963 +       More efficient reading of Huffman codes, a streamlined read_bunzip()
964 +       function, and various other tweaks.  In (limited) tests, approximately
965 +       20% faster than bzcat on x86 and about 10% faster on arm.
966 +
967 +       Note that about 2/3 of the time is spent in read_unzip() reversing
968 +       the Burrows-Wheeler transformation.  Much of that time is delay
969 +       resulting from cache misses.
970 +
971 +       I would ask that anyone benefiting from this work, especially those
972 +       using it in commercial products, consider making a donation to my local
973 +       non-profit hospice organization in the name of the woman I loved, who
974 +       passed away Feb. 12, 2003.
975 +
976 +               In memory of Toni W. Hagan
977 +
978 +               Hospice of Acadiana, Inc.
979 +               2600 Johnston St., Suite 200
980 +               Lafayette, LA 70503-3240
981 +
982 +               Phone (337) 232-1234 or 1-800-738-2226
983 +               Fax   (337) 232-1297
984 +
985 +               http://www.hospiceacadiana.com/
986 +
987 +       Manuel
988 + */
989 +
990 +/*
991 +       Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu)
992 +*/
993 +
994 +
995 +#ifndef STATIC
996 +#include <linux/decompress/bunzip2.h>
997 +#endif /* !STATIC */
998 +
999 +#include <linux/decompress/mm.h>
1000 +
1001 +#ifndef INT_MAX
1002 +#define INT_MAX 0x7fffffff
1003 +#endif
1004 +
1005 +/* Constants for Huffman coding */
1006 +#define MAX_GROUPS             6
1007 +#define GROUP_SIZE             50      /* 64 would have been more efficient */
1008 +#define MAX_HUFCODE_BITS       20      /* Longest Huffman code allowed */
1009 +#define MAX_SYMBOLS            258     /* 256 literals + RUNA + RUNB */
1010 +#define SYMBOL_RUNA            0
1011 +#define SYMBOL_RUNB            1
1012 +
1013 +/* Status return values */
1014 +#define RETVAL_OK                      0
1015 +#define RETVAL_LAST_BLOCK              (-1)
1016 +#define RETVAL_NOT_BZIP_DATA           (-2)
1017 +#define RETVAL_UNEXPECTED_INPUT_EOF    (-3)
1018 +#define RETVAL_UNEXPECTED_OUTPUT_EOF   (-4)
1019 +#define RETVAL_DATA_ERROR              (-5)
1020 +#define RETVAL_OUT_OF_MEMORY           (-6)
1021 +#define RETVAL_OBSOLETE_INPUT          (-7)
1022 +
1023 +/* Other housekeeping constants */
1024 +#define BZIP2_IOBUF_SIZE               4096
1025 +
1026 +/* This is what we know about each Huffman coding group */
1027 +struct group_data {
1028 +       /* We have an extra slot at the end of limit[] for a sentinal value. */
1029 +       int limit[MAX_HUFCODE_BITS+1];
1030 +       int base[MAX_HUFCODE_BITS];
1031 +       int permute[MAX_SYMBOLS];
1032 +       int minLen, maxLen;
1033 +};
1034 +
1035 +/* Structure holding all the housekeeping data, including IO buffers and
1036 +   memory that persists between calls to bunzip */
1037 +struct bunzip_data {
1038 +       /* State for interrupting output loop */
1039 +       int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent;
1040 +       /* I/O tracking data (file handles, buffers, positions, etc.) */
1041 +       int (*fill)(void*, unsigned int);
1042 +       int inbufCount, inbufPos /*, outbufPos*/;
1043 +       unsigned char *inbuf /*,*outbuf*/;
1044 +       unsigned int inbufBitCount, inbufBits;
1045 +       /* The CRC values stored in the block header and calculated from the
1046 +       data */
1047 +       unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC;
1048 +       /* Intermediate buffer and its size (in bytes) */
1049 +       unsigned int *dbuf, dbufSize;
1050 +       /* These things are a bit too big to go on the stack */
1051 +       unsigned char selectors[32768];         /* nSelectors = 15 bits */
1052 +       struct group_data groups[MAX_GROUPS];   /* Huffman coding tables */
1053 +       int io_error;                   /* non-zero if we have IO error */
1054 +};
1055 +
1056 +
1057 +/* Return the next nnn bits of input.  All reads from the compressed input
1058 +   are done through this function.  All reads are big endian */
1059 +static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted)
1060 +{
1061 +       unsigned int bits = 0;
1062 +
1063 +       /* If we need to get more data from the byte buffer, do so.
1064 +          (Loop getting one byte at a time to enforce endianness and avoid
1065 +          unaligned access.) */
1066 +       while (bd->inbufBitCount < bits_wanted) {
1067 +               /* If we need to read more data from file into byte buffer, do
1068 +                  so */
1069 +               if (bd->inbufPos == bd->inbufCount) {
1070 +                       if (bd->io_error)
1071 +                               return 0;
1072 +                       bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE);
1073 +                       if (bd->inbufCount <= 0) {
1074 +                               bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF;
1075 +                               return 0;
1076 +                       }
1077 +                       bd->inbufPos = 0;
1078 +               }
1079 +               /* Avoid 32-bit overflow (dump bit buffer to top of output) */
1080 +               if (bd->inbufBitCount >= 24) {
1081 +                       bits = bd->inbufBits&((1 << bd->inbufBitCount)-1);
1082 +                       bits_wanted -= bd->inbufBitCount;
1083 +                       bits <<= bits_wanted;
1084 +                       bd->inbufBitCount = 0;
1085 +               }
1086 +               /* Grab next 8 bits of input from buffer. */
1087 +               bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
1088 +               bd->inbufBitCount += 8;
1089 +       }
1090 +       /* Calculate result */
1091 +       bd->inbufBitCount -= bits_wanted;
1092 +       bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1);
1093 +
1094 +       return bits;
1095 +}
1096 +
1097 +/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
1098 +
1099 +static int INIT get_next_block(struct bunzip_data *bd)
1100 +{
1101 +       struct group_data *hufGroup = NULL;
1102 +       int *base = NULL;
1103 +       int *limit = NULL;
1104 +       int dbufCount, nextSym, dbufSize, groupCount, selector,
1105 +               i, j, k, t, runPos, symCount, symTotal, nSelectors,
1106 +               byteCount[256];
1107 +       unsigned char uc, symToByte[256], mtfSymbol[256], *selectors;
1108 +       unsigned int *dbuf, origPtr;
1109 +
1110 +       dbuf = bd->dbuf;
1111 +       dbufSize = bd->dbufSize;
1112 +       selectors = bd->selectors;
1113 +
1114 +       /* Read in header signature and CRC, then validate signature.
1115 +          (last block signature means CRC is for whole file, return now) */
1116 +       i = get_bits(bd, 24);
1117 +       j = get_bits(bd, 24);
1118 +       bd->headerCRC = get_bits(bd, 32);
1119 +       if ((i == 0x177245) && (j == 0x385090))
1120 +               return RETVAL_LAST_BLOCK;
1121 +       if ((i != 0x314159) || (j != 0x265359))
1122 +               return RETVAL_NOT_BZIP_DATA;
1123 +       /* We can add support for blockRandomised if anybody complains.
1124 +          There was some code for this in busybox 1.0.0-pre3, but nobody ever
1125 +          noticed that it didn't actually work. */
1126 +       if (get_bits(bd, 1))
1127 +               return RETVAL_OBSOLETE_INPUT;
1128 +       origPtr = get_bits(bd, 24);
1129 +       if (origPtr > dbufSize)
1130 +               return RETVAL_DATA_ERROR;
1131 +       /* mapping table: if some byte values are never used (encoding things
1132 +          like ascii text), the compression code removes the gaps to have fewer
1133 +          symbols to deal with, and writes a sparse bitfield indicating which
1134 +          values were present.  We make a translation table to convert the
1135 +          symbols back to the corresponding bytes. */
1136 +       t = get_bits(bd, 16);
1137 +       symTotal = 0;
1138 +       for (i = 0; i < 16; i++) {
1139 +               if (t&(1 << (15-i))) {
1140 +                       k = get_bits(bd, 16);
1141 +                       for (j = 0; j < 16; j++)
1142 +                               if (k&(1 << (15-j)))
1143 +                                       symToByte[symTotal++] = (16*i)+j;
1144 +               }
1145 +       }
1146 +       /* How many different Huffman coding groups does this block use? */
1147 +       groupCount = get_bits(bd, 3);
1148 +       if (groupCount < 2 || groupCount > MAX_GROUPS)
1149 +               return RETVAL_DATA_ERROR;
1150 +       /* nSelectors: Every GROUP_SIZE many symbols we select a new
1151 +          Huffman coding group.  Read in the group selector list,
1152 +          which is stored as MTF encoded bit runs.  (MTF = Move To
1153 +          Front, as each value is used it's moved to the start of the
1154 +          list.) */
1155 +       nSelectors = get_bits(bd, 15);
1156 +       if (!nSelectors)
1157 +               return RETVAL_DATA_ERROR;
1158 +       for (i = 0; i < groupCount; i++)
1159 +               mtfSymbol[i] = i;
1160 +       for (i = 0; i < nSelectors; i++) {
1161 +               /* Get next value */
1162 +               for (j = 0; get_bits(bd, 1); j++)
1163 +                       if (j >= groupCount)
1164 +                               return RETVAL_DATA_ERROR;
1165 +               /* Decode MTF to get the next selector */
1166 +               uc = mtfSymbol[j];
1167 +               for (; j; j--)
1168 +                       mtfSymbol[j] = mtfSymbol[j-1];
1169 +               mtfSymbol[0] = selectors[i] = uc;
1170 +       }
1171 +       /* Read the Huffman coding tables for each group, which code
1172 +          for symTotal literal symbols, plus two run symbols (RUNA,
1173 +          RUNB) */
1174 +       symCount = symTotal+2;
1175 +       for (j = 0; j < groupCount; j++) {
1176 +               unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1];
1177 +               int     minLen, maxLen, pp;
1178 +               /* Read Huffman code lengths for each symbol.  They're
1179 +                  stored in a way similar to mtf; record a starting
1180 +                  value for the first symbol, and an offset from the
1181 +                  previous value for everys symbol after that.
1182 +                  (Subtracting 1 before the loop and then adding it
1183 +                  back at the end is an optimization that makes the
1184 +                  test inside the loop simpler: symbol length 0
1185 +                  becomes negative, so an unsigned inequality catches
1186 +                  it.) */
1187 +               t = get_bits(bd, 5)-1;
1188 +               for (i = 0; i < symCount; i++) {
1189 +                       for (;;) {
1190 +                               if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
1191 +                                       return RETVAL_DATA_ERROR;
1192 +
1193 +                               /* If first bit is 0, stop.  Else
1194 +                                  second bit indicates whether to
1195 +                                  increment or decrement the value.
1196 +                                  Optimization: grab 2 bits and unget
1197 +                                  the second if the first was 0. */
1198 +
1199 +                               k = get_bits(bd, 2);
1200 +                               if (k < 2) {
1201 +                                       bd->inbufBitCount++;
1202 +                                       break;
1203 +                               }
1204 +                               /* Add one if second bit 1, else
1205 +                                * subtract 1.  Avoids if/else */
1206 +                               t += (((k+1)&2)-1);
1207 +                       }
1208 +                       /* Correct for the initial -1, to get the
1209 +                        * final symbol length */
1210 +                       length[i] = t+1;
1211 +               }
1212 +               /* Find largest and smallest lengths in this group */
1213 +               minLen = maxLen = length[0];
1214 +
1215 +               for (i = 1; i < symCount; i++) {
1216 +                       if (length[i] > maxLen)
1217 +                               maxLen = length[i];
1218 +                       else if (length[i] < minLen)
1219 +                               minLen = length[i];
1220 +               }
1221 +
1222 +               /* Calculate permute[], base[], and limit[] tables from
1223 +                * length[].
1224 +                *
1225 +                * permute[] is the lookup table for converting
1226 +                * Huffman coded symbols into decoded symbols.  base[]
1227 +                * is the amount to subtract from the value of a
1228 +                * Huffman symbol of a given length when using
1229 +                * permute[].
1230 +                *
1231 +                * limit[] indicates the largest numerical value a
1232 +                * symbol with a given number of bits can have.  This
1233 +                * is how the Huffman codes can vary in length: each
1234 +                * code with a value > limit[length] needs another
1235 +                * bit.
1236 +                */
1237 +               hufGroup = bd->groups+j;
1238 +               hufGroup->minLen = minLen;
1239 +               hufGroup->maxLen = maxLen;
1240 +               /* Note that minLen can't be smaller than 1, so we
1241 +                  adjust the base and limit array pointers so we're
1242 +                  not always wasting the first entry.  We do this
1243 +                  again when using them (during symbol decoding).*/
1244 +               base = hufGroup->base-1;
1245 +               limit = hufGroup->limit-1;
1246 +               /* Calculate permute[].  Concurently, initialize
1247 +                * temp[] and limit[]. */
1248 +               pp = 0;
1249 +               for (i = minLen; i <= maxLen; i++) {
1250 +                       temp[i] = limit[i] = 0;
1251 +                       for (t = 0; t < symCount; t++)
1252 +                               if (length[t] == i)
1253 +                                       hufGroup->permute[pp++] = t;
1254 +               }
1255 +               /* Count symbols coded for at each bit length */
1256 +               for (i = 0; i < symCount; i++)
1257 +                       temp[length[i]]++;
1258 +               /* Calculate limit[] (the largest symbol-coding value
1259 +                *at each bit length, which is (previous limit <<
1260 +                *1)+symbols at this level), and base[] (number of
1261 +                *symbols to ignore at each bit length, which is limit
1262 +                *minus the cumulative count of symbols coded for
1263 +                *already). */
1264 +               pp = t = 0;
1265 +               for (i = minLen; i < maxLen; i++) {
1266 +                       pp += temp[i];
1267 +                       /* We read the largest possible symbol size
1268 +                          and then unget bits after determining how
1269 +                          many we need, and those extra bits could be
1270 +                          set to anything.  (They're noise from
1271 +                          future symbols.)  At each level we're
1272 +                          really only interested in the first few
1273 +                          bits, so here we set all the trailing
1274 +                          to-be-ignored bits to 1 so they don't
1275 +                          affect the value > limit[length]
1276 +                          comparison. */
1277 +                       limit[i] = (pp << (maxLen - i)) - 1;
1278 +                       pp <<= 1;
1279 +                       base[i+1] = pp-(t += temp[i]);
1280 +               }
1281 +               limit[maxLen+1] = INT_MAX; /* Sentinal value for
1282 +                                           * reading next sym. */
1283 +               limit[maxLen] = pp+temp[maxLen]-1;
1284 +               base[minLen] = 0;
1285 +       }
1286 +       /* We've finished reading and digesting the block header.  Now
1287 +          read this block's Huffman coded symbols from the file and
1288 +          undo the Huffman coding and run length encoding, saving the
1289 +          result into dbuf[dbufCount++] = uc */
1290 +
1291 +       /* Initialize symbol occurrence counters and symbol Move To
1292 +        * Front table */
1293 +       for (i = 0; i < 256; i++) {
1294 +               byteCount[i] = 0;
1295 +               mtfSymbol[i] = (unsigned char)i;
1296 +       }
1297 +       /* Loop through compressed symbols. */
1298 +       runPos = dbufCount = symCount = selector = 0;
1299 +       for (;;) {
1300 +               /* Determine which Huffman coding group to use. */
1301 +               if (!(symCount--)) {
1302 +                       symCount = GROUP_SIZE-1;
1303 +                       if (selector >= nSelectors)
1304 +                               return RETVAL_DATA_ERROR;
1305 +                       hufGroup = bd->groups+selectors[selector++];
1306 +                       base = hufGroup->base-1;
1307 +                       limit = hufGroup->limit-1;
1308 +               }
1309 +               /* Read next Huffman-coded symbol. */
1310 +               /* Note: It is far cheaper to read maxLen bits and
1311 +                  back up than it is to read minLen bits and then an
1312 +                  additional bit at a time, testing as we go.
1313 +                  Because there is a trailing last block (with file
1314 +                  CRC), there is no danger of the overread causing an
1315 +                  unexpected EOF for a valid compressed file.  As a
1316 +                  further optimization, we do the read inline
1317 +                  (falling back to a call to get_bits if the buffer
1318 +                  runs dry).  The following (up to got_huff_bits:) is
1319 +                  equivalent to j = get_bits(bd, hufGroup->maxLen);
1320 +                */
1321 +               while (bd->inbufBitCount < hufGroup->maxLen) {
1322 +                       if (bd->inbufPos == bd->inbufCount) {
1323 +                               j = get_bits(bd, hufGroup->maxLen);
1324 +                               goto got_huff_bits;
1325 +                       }
1326 +                       bd->inbufBits =
1327 +                               (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
1328 +                       bd->inbufBitCount += 8;
1329 +               };
1330 +               bd->inbufBitCount -= hufGroup->maxLen;
1331 +               j = (bd->inbufBits >> bd->inbufBitCount)&
1332 +                       ((1 << hufGroup->maxLen)-1);
1333 +got_huff_bits:
1334 +               /* Figure how how many bits are in next symbol and
1335 +                * unget extras */
1336 +               i = hufGroup->minLen;
1337 +               while (j > limit[i])
1338 +                       ++i;
1339 +               bd->inbufBitCount += (hufGroup->maxLen - i);
1340 +               /* Huffman decode value to get nextSym (with bounds checking) */
1341 +               if ((i > hufGroup->maxLen)
1342 +                       || (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i]))
1343 +                               >= MAX_SYMBOLS))
1344 +                       return RETVAL_DATA_ERROR;
1345 +               nextSym = hufGroup->permute[j];
1346 +               /* We have now decoded the symbol, which indicates
1347 +                  either a new literal byte, or a repeated run of the
1348 +                  most recent literal byte.  First, check if nextSym
1349 +                  indicates a repeated run, and if so loop collecting
1350 +                  how many times to repeat the last literal. */
1351 +               if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
1352 +                       /* If this is the start of a new run, zero out
1353 +                        * counter */
1354 +                       if (!runPos) {
1355 +                               runPos = 1;
1356 +                               t = 0;
1357 +                       }
1358 +                       /* Neat trick that saves 1 symbol: instead of
1359 +                          or-ing 0 or 1 at each bit position, add 1
1360 +                          or 2 instead.  For example, 1011 is 1 << 0
1361 +                          + 1 << 1 + 2 << 2.  1010 is 2 << 0 + 2 << 1
1362 +                          + 1 << 2.  You can make any bit pattern
1363 +                          that way using 1 less symbol than the basic
1364 +                          or 0/1 method (except all bits 0, which
1365 +                          would use no symbols, but a run of length 0
1366 +                          doesn't mean anything in this context).
1367 +                          Thus space is saved. */
1368 +                       t += (runPos << nextSym);
1369 +                       /* +runPos if RUNA; +2*runPos if RUNB */
1370 +
1371 +                       runPos <<= 1;
1372 +                       continue;
1373 +               }
1374 +               /* When we hit the first non-run symbol after a run,
1375 +                  we now know how many times to repeat the last
1376 +                  literal, so append that many copies to our buffer
1377 +                  of decoded symbols (dbuf) now.  (The last literal
1378 +                  used is the one at the head of the mtfSymbol
1379 +                  array.) */
1380 +               if (runPos) {
1381 +                       runPos = 0;
1382 +                       if (dbufCount+t >= dbufSize)
1383 +                               return RETVAL_DATA_ERROR;
1384 +
1385 +                       uc = symToByte[mtfSymbol[0]];
1386 +                       byteCount[uc] += t;
1387 +                       while (t--)
1388 +                               dbuf[dbufCount++] = uc;
1389 +               }
1390 +               /* Is this the terminating symbol? */
1391 +               if (nextSym > symTotal)
1392 +                       break;
1393 +               /* At this point, nextSym indicates a new literal
1394 +                  character.  Subtract one to get the position in the
1395 +                  MTF array at which this literal is currently to be
1396 +                  found.  (Note that the result can't be -1 or 0,
1397 +                  because 0 and 1 are RUNA and RUNB.  But another
1398 +                  instance of the first symbol in the mtf array,
1399 +                  position 0, would have been handled as part of a
1400 +                  run above.  Therefore 1 unused mtf position minus 2
1401 +                  non-literal nextSym values equals -1.) */
1402 +               if (dbufCount >= dbufSize)
1403 +                       return RETVAL_DATA_ERROR;
1404 +               i = nextSym - 1;
1405 +               uc = mtfSymbol[i];
1406 +               /* Adjust the MTF array.  Since we typically expect to
1407 +                *move only a small number of symbols, and are bound
1408 +                *by 256 in any case, using memmove here would
1409 +                *typically be bigger and slower due to function call
1410 +                *overhead and other assorted setup costs. */
1411 +               do {
1412 +                       mtfSymbol[i] = mtfSymbol[i-1];
1413 +               } while (--i);
1414 +               mtfSymbol[0] = uc;
1415 +               uc = symToByte[uc];
1416 +               /* We have our literal byte.  Save it into dbuf. */
1417 +               byteCount[uc]++;
1418 +               dbuf[dbufCount++] = (unsigned int)uc;
1419 +       }
1420 +       /* At this point, we've read all the Huffman-coded symbols
1421 +          (and repeated runs) for this block from the input stream,
1422 +          and decoded them into the intermediate buffer.  There are
1423 +          dbufCount many decoded bytes in dbuf[].  Now undo the
1424 +          Burrows-Wheeler transform on dbuf.  See
1425 +          http://dogma.net/markn/articles/bwt/bwt.htm
1426 +        */
1427 +       /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
1428 +       j = 0;
1429 +       for (i = 0; i < 256; i++) {
1430 +               k = j+byteCount[i];
1431 +               byteCount[i] = j;
1432 +               j = k;
1433 +       }
1434 +       /* Figure out what order dbuf would be in if we sorted it. */
1435 +       for (i = 0; i < dbufCount; i++) {
1436 +               uc = (unsigned char)(dbuf[i] & 0xff);
1437 +               dbuf[byteCount[uc]] |= (i << 8);
1438 +               byteCount[uc]++;
1439 +       }
1440 +       /* Decode first byte by hand to initialize "previous" byte.
1441 +          Note that it doesn't get output, and if the first three
1442 +          characters are identical it doesn't qualify as a run (hence
1443 +          writeRunCountdown = 5). */
1444 +       if (dbufCount) {
1445 +               if (origPtr >= dbufCount)
1446 +                       return RETVAL_DATA_ERROR;
1447 +               bd->writePos = dbuf[origPtr];
1448 +               bd->writeCurrent = (unsigned char)(bd->writePos&0xff);
1449 +               bd->writePos >>= 8;
1450 +               bd->writeRunCountdown = 5;
1451 +       }
1452 +       bd->writeCount = dbufCount;
1453 +
1454 +       return RETVAL_OK;
1455 +}
1456 +
1457 +/* Undo burrows-wheeler transform on intermediate buffer to produce output.
1458 +   If start_bunzip was initialized with out_fd =-1, then up to len bytes of
1459 +   data are written to outbuf.  Return value is number of bytes written or
1460 +   error (all errors are negative numbers).  If out_fd!=-1, outbuf and len
1461 +   are ignored, data is written to out_fd and return is RETVAL_OK or error.
1462 +*/
1463 +
1464 +static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len)
1465 +{
1466 +       const unsigned int *dbuf;
1467 +       int pos, xcurrent, previous, gotcount;
1468 +
1469 +       /* If last read was short due to end of file, return last block now */
1470 +       if (bd->writeCount < 0)
1471 +               return bd->writeCount;
1472 +
1473 +       gotcount = 0;
1474 +       dbuf = bd->dbuf;
1475 +       pos = bd->writePos;
1476 +       xcurrent = bd->writeCurrent;
1477 +
1478 +       /* We will always have pending decoded data to write into the output
1479 +          buffer unless this is the very first call (in which case we haven't
1480 +          Huffman-decoded a block into the intermediate buffer yet). */
1481 +
1482 +       if (bd->writeCopies) {
1483 +               /* Inside the loop, writeCopies means extra copies (beyond 1) */
1484 +               --bd->writeCopies;
1485 +               /* Loop outputting bytes */
1486 +               for (;;) {
1487 +                       /* If the output buffer is full, snapshot
1488 +                        * state and return */
1489 +                       if (gotcount >= len) {
1490 +                               bd->writePos = pos;
1491 +                               bd->writeCurrent = xcurrent;
1492 +                               bd->writeCopies++;
1493 +                               return len;
1494 +                       }
1495 +                       /* Write next byte into output buffer, updating CRC */
1496 +                       outbuf[gotcount++] = xcurrent;
1497 +                       bd->writeCRC = (((bd->writeCRC) << 8)
1498 +                               ^bd->crc32Table[((bd->writeCRC) >> 24)
1499 +                               ^xcurrent]);
1500 +                       /* Loop now if we're outputting multiple
1501 +                        * copies of this byte */
1502 +                       if (bd->writeCopies) {
1503 +                               --bd->writeCopies;
1504 +                               continue;
1505 +                       }
1506 +decode_next_byte:
1507 +                       if (!bd->writeCount--)
1508 +                               break;
1509 +                       /* Follow sequence vector to undo
1510 +                        * Burrows-Wheeler transform */
1511 +                       previous = xcurrent;
1512 +                       pos = dbuf[pos];
1513 +                       xcurrent = pos&0xff;
1514 +                       pos >>= 8;
1515 +                       /* After 3 consecutive copies of the same
1516 +                          byte, the 4th is a repeat count.  We count
1517 +                          down from 4 instead *of counting up because
1518 +                          testing for non-zero is faster */
1519 +                       if (--bd->writeRunCountdown) {
1520 +                               if (xcurrent != previous)
1521 +                                       bd->writeRunCountdown = 4;
1522 +                       } else {
1523 +                               /* We have a repeated run, this byte
1524 +                                * indicates the count */
1525 +                               bd->writeCopies = xcurrent;
1526 +                               xcurrent = previous;
1527 +                               bd->writeRunCountdown = 5;
1528 +                               /* Sometimes there are just 3 bytes
1529 +                                * (run length 0) */
1530 +                               if (!bd->writeCopies)
1531 +                                       goto decode_next_byte;
1532 +                               /* Subtract the 1 copy we'd output
1533 +                                * anyway to get extras */
1534 +                               --bd->writeCopies;
1535 +                       }
1536 +               }
1537 +               /* Decompression of this block completed successfully */
1538 +               bd->writeCRC = ~bd->writeCRC;
1539 +               bd->totalCRC = ((bd->totalCRC << 1) |
1540 +                               (bd->totalCRC >> 31)) ^ bd->writeCRC;
1541 +               /* If this block had a CRC error, force file level CRC error. */
1542 +               if (bd->writeCRC != bd->headerCRC) {
1543 +                       bd->totalCRC = bd->headerCRC+1;
1544 +                       return RETVAL_LAST_BLOCK;
1545 +               }
1546 +       }
1547 +
1548 +       /* Refill the intermediate buffer by Huffman-decoding next
1549 +        * block of input */
1550 +       /* (previous is just a convenient unused temp variable here) */
1551 +       previous = get_next_block(bd);
1552 +       if (previous) {
1553 +               bd->writeCount = previous;
1554 +               return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount;
1555 +       }
1556 +       bd->writeCRC = 0xffffffffUL;
1557 +       pos = bd->writePos;
1558 +       xcurrent = bd->writeCurrent;
1559 +       goto decode_next_byte;
1560 +}
1561 +
1562 +static int INIT nofill(void *buf, unsigned int len)
1563 +{
1564 +       return -1;
1565 +}
1566 +
1567 +/* Allocate the structure, read file header.  If in_fd ==-1, inbuf must contain
1568 +   a complete bunzip file (len bytes long).  If in_fd!=-1, inbuf and len are
1569 +   ignored, and data is read from file handle into temporary buffer. */
1570 +static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, int len,
1571 +                            int (*fill)(void*, unsigned int))
1572 +{
1573 +       struct bunzip_data *bd;
1574 +       unsigned int i, j, c;
1575 +       const unsigned int BZh0 =
1576 +               (((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16)
1577 +               +(((unsigned int)'h') << 8)+(unsigned int)'0';
1578 +
1579 +       /* Figure out how much data to allocate */
1580 +       i = sizeof(struct bunzip_data);
1581 +
1582 +       /* Allocate bunzip_data.  Most fields initialize to zero. */
1583 +       bd = *bdp = malloc(i);
1584 +       memset(bd, 0, sizeof(struct bunzip_data));
1585 +       /* Setup input buffer */
1586 +       bd->inbuf = inbuf;
1587 +       bd->inbufCount = len;
1588 +       if (fill != NULL)
1589 +               bd->fill = fill;
1590 +       else
1591 +               bd->fill = nofill;
1592 +
1593 +       /* Init the CRC32 table (big endian) */
1594 +       for (i = 0; i < 256; i++) {
1595 +               c = i << 24;
1596 +               for (j = 8; j; j--)
1597 +                       c = c&0x80000000 ? (c << 1)^0x04c11db7 : (c << 1);
1598 +               bd->crc32Table[i] = c;
1599 +       }
1600 +
1601 +       /* Ensure that file starts with "BZh['1'-'9']." */
1602 +       i = get_bits(bd, 32);
1603 +       if (((unsigned int)(i-BZh0-1)) >= 9)
1604 +               return RETVAL_NOT_BZIP_DATA;
1605 +
1606 +       /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
1607 +          uncompressed data.  Allocate intermediate buffer for block. */
1608 +       bd->dbufSize = 100000*(i-BZh0);
1609 +
1610 +       bd->dbuf = large_malloc(bd->dbufSize * sizeof(int));
1611 +       return RETVAL_OK;
1612 +}
1613 +
1614 +/* Example usage: decompress src_fd to dst_fd.  (Stops at end of bzip2 data,
1615 +   not end of file.) */
1616 +STATIC int INIT bunzip2(unsigned char *buf, int len,
1617 +                       int(*fill)(void*, unsigned int),
1618 +                       int(*flush)(void*, unsigned int),
1619 +                       unsigned char *outbuf,
1620 +                       int *pos,
1621 +                       void(*error_fn)(char *x))
1622 +{
1623 +       struct bunzip_data *bd;
1624 +       int i = -1;
1625 +       unsigned char *inbuf;
1626 +
1627 +       set_error_fn(error_fn);
1628 +       if (flush)
1629 +               outbuf = malloc(BZIP2_IOBUF_SIZE);
1630 +       else
1631 +               len -= 4; /* Uncompressed size hack active in pre-boot
1632 +                            environment */
1633 +       if (!outbuf) {
1634 +               error("Could not allocate output bufer");
1635 +               return -1;
1636 +       }
1637 +       if (buf)
1638 +               inbuf = buf;
1639 +       else
1640 +               inbuf = malloc(BZIP2_IOBUF_SIZE);
1641 +       if (!inbuf) {
1642 +               error("Could not allocate input bufer");
1643 +               goto exit_0;
1644 +       }
1645 +       i = start_bunzip(&bd, inbuf, len, fill);
1646 +       if (!i) {
1647 +               for (;;) {
1648 +                       i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE);
1649 +                       if (i <= 0)
1650 +                               break;
1651 +                       if (!flush)
1652 +                               outbuf += i;
1653 +                       else
1654 +                               if (i != flush(outbuf, i)) {
1655 +                                       i = RETVAL_UNEXPECTED_OUTPUT_EOF;
1656 +                                       break;
1657 +                               }
1658 +               }
1659 +       }
1660 +       /* Check CRC and release memory */
1661 +       if (i == RETVAL_LAST_BLOCK) {
1662 +               if (bd->headerCRC != bd->totalCRC)
1663 +                       error("Data integrity error when decompressing.");
1664 +               else
1665 +                       i = RETVAL_OK;
1666 +       } else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) {
1667 +               error("Compressed file ends unexpectedly");
1668 +       }
1669 +       if (bd->dbuf)
1670 +               large_free(bd->dbuf);
1671 +       if (pos)
1672 +               *pos = bd->inbufPos;
1673 +       free(bd);
1674 +       if (!buf)
1675 +               free(inbuf);
1676 +exit_0:
1677 +       if (flush)
1678 +               free(outbuf);
1679 +       return i;
1680 +}
1681 +
1682 +#define decompress bunzip2
1683 diff -urNp linux-2.6.27.orig/lib/decompress_unlzma.c linux-2.6.27/lib/decompress_unlzma.c
1684 --- linux-2.6.27.orig/lib/decompress_unlzma.c   1970-01-01 01:00:00.000000000 +0100
1685 +++ linux-2.6.27/lib/decompress_unlzma.c        2008-10-30 22:27:29.000000000 +0100
1686 @@ -0,0 +1,647 @@
1687 +/* Lzma decompressor for Linux kernel. Shamelessly snarfed
1688 + *from busybox 1.1.1
1689 + *
1690 + *Linux kernel adaptation
1691 + *Copyright (C) 2006  Alain < alain@knaff.lu >
1692 + *
1693 + *Based on small lzma deflate implementation/Small range coder
1694 + *implementation for lzma.
1695 + *Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
1696 + *
1697 + *Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
1698 + *Copyright (C) 1999-2005  Igor Pavlov
1699 + *
1700 + *Copyrights of the parts, see headers below.
1701 + *
1702 + *
1703 + *This program is free software; you can redistribute it and/or
1704 + *modify it under the terms of the GNU Lesser General Public
1705 + *License as published by the Free Software Foundation; either
1706 + *version 2.1 of the License, or (at your option) any later version.
1707 + *
1708 + *This program is distributed in the hope that it will be useful,
1709 + *but WITHOUT ANY WARRANTY; without even the implied warranty of
1710 + *MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
1711 + *Lesser General Public License for more details.
1712 + *
1713 + *You should have received a copy of the GNU Lesser General Public
1714 + *License along with this library; if not, write to the Free Software
1715 + *Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
1716 + */
1717 +
1718 +#ifndef STATIC
1719 +#include <linux/decompress/unlzma.h>
1720 +#endif /* STATIC */
1721 +
1722 +#include <linux/decompress/mm.h>
1723 +
1724 +#define        MIN(a, b) (((a) < (b)) ? (a) : (b))
1725 +
1726 +static long long INIT read_int(unsigned char *ptr, int size)
1727 +{
1728 +       int i;
1729 +       long long ret = 0;
1730 +
1731 +       for (i = 0; i < size; i++)
1732 +               ret = (ret << 8) | ptr[size-i-1];
1733 +       return ret;
1734 +}
1735 +
1736 +#define ENDIAN_CONVERT(x) \
1737 +  x = (typeof(x))read_int((unsigned char *)&x, sizeof(x))
1738 +
1739 +
1740 +/* Small range coder implementation for lzma.
1741 + *Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
1742 + *
1743 + *Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
1744 + *Copyright (c) 1999-2005  Igor Pavlov
1745 + */
1746 +
1747 +#include <linux/compiler.h>
1748 +
1749 +#define LZMA_IOBUF_SIZE        0x10000
1750 +
1751 +struct rc {
1752 +       int (*fill)(void*, unsigned int);
1753 +       uint8_t *ptr;
1754 +       uint8_t *buffer;
1755 +       uint8_t *buffer_end;
1756 +       int buffer_size;
1757 +       uint32_t code;
1758 +       uint32_t range;
1759 +       uint32_t bound;
1760 +};
1761 +
1762 +
1763 +#define RC_TOP_BITS 24
1764 +#define RC_MOVE_BITS 5
1765 +#define RC_MODEL_TOTAL_BITS 11
1766 +
1767 +
1768 +/* Called twice: once at startup and once in rc_normalize() */
1769 +static void INIT rc_read(struct rc *rc)
1770 +{
1771 +       rc->buffer_size = rc->fill((char *)rc->buffer, LZMA_IOBUF_SIZE);
1772 +       if (rc->buffer_size <= 0)
1773 +               error("unexpected EOF");
1774 +       rc->ptr = rc->buffer;
1775 +       rc->buffer_end = rc->buffer + rc->buffer_size;
1776 +}
1777 +
1778 +/* Called once */
1779 +static inline void INIT rc_init(struct rc *rc,
1780 +                                      int (*fill)(void*, unsigned int),
1781 +                                      char *buffer, int buffer_size)
1782 +{
1783 +       rc->fill = fill;
1784 +       rc->buffer = (uint8_t *)buffer;
1785 +       rc->buffer_size = buffer_size;
1786 +       rc->buffer_end = rc->buffer + rc->buffer_size;
1787 +       rc->ptr = rc->buffer;
1788 +
1789 +       rc->code = 0;
1790 +       rc->range = 0xFFFFFFFF;
1791 +}
1792 +
1793 +static inline void INIT rc_init_code(struct rc *rc)
1794 +{
1795 +       int i;
1796 +
1797 +       for (i = 0; i < 5; i++) {
1798 +               if (rc->ptr >= rc->buffer_end)
1799 +                       rc_read(rc);
1800 +               rc->code = (rc->code << 8) | *rc->ptr++;
1801 +       }
1802 +}
1803 +
1804 +
1805 +/* Called once. TODO: bb_maybe_free() */
1806 +static inline void INIT rc_free(struct rc *rc)
1807 +{
1808 +       free(rc->buffer);
1809 +}
1810 +
1811 +/* Called twice, but one callsite is in inline'd rc_is_bit_0_helper() */
1812 +static void INIT rc_do_normalize(struct rc *rc)
1813 +{
1814 +       if (rc->ptr >= rc->buffer_end)
1815 +               rc_read(rc);
1816 +       rc->range <<= 8;
1817 +       rc->code = (rc->code << 8) | *rc->ptr++;
1818 +}
1819 +static inline void INIT rc_normalize(struct rc *rc)
1820 +{
1821 +       if (rc->range < (1 << RC_TOP_BITS))
1822 +               rc_do_normalize(rc);
1823 +}
1824 +
1825 +/* Called 9 times */
1826 +/* Why rc_is_bit_0_helper exists?
1827 + *Because we want to always expose (rc->code < rc->bound) to optimizer
1828 + */
1829 +static inline uint32_t INIT rc_is_bit_0_helper(struct rc *rc, uint16_t *p)
1830 +{
1831 +       rc_normalize(rc);
1832 +       rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS);
1833 +       return rc->bound;
1834 +}
1835 +static inline int INIT rc_is_bit_0(struct rc *rc, uint16_t *p)
1836 +{
1837 +       uint32_t t = rc_is_bit_0_helper(rc, p);
1838 +       return rc->code < t;
1839 +}
1840 +
1841 +/* Called ~10 times, but very small, thus inlined */
1842 +static inline void INIT rc_update_bit_0(struct rc *rc, uint16_t *p)
1843 +{
1844 +       rc->range = rc->bound;
1845 +       *p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
1846 +}
1847 +static inline void rc_update_bit_1(struct rc *rc, uint16_t *p)
1848 +{
1849 +       rc->range -= rc->bound;
1850 +       rc->code -= rc->bound;
1851 +       *p -= *p >> RC_MOVE_BITS;
1852 +}
1853 +
1854 +/* Called 4 times in unlzma loop */
1855 +static int INIT rc_get_bit(struct rc *rc, uint16_t *p, int *symbol)
1856 +{
1857 +       if (rc_is_bit_0(rc, p)) {
1858 +               rc_update_bit_0(rc, p);
1859 +               *symbol *= 2;
1860 +               return 0;
1861 +       } else {
1862 +               rc_update_bit_1(rc, p);
1863 +               *symbol = *symbol * 2 + 1;
1864 +               return 1;
1865 +       }
1866 +}
1867 +
1868 +/* Called once */
1869 +static inline int INIT rc_direct_bit(struct rc *rc)
1870 +{
1871 +       rc_normalize(rc);
1872 +       rc->range >>= 1;
1873 +       if (rc->code >= rc->range) {
1874 +               rc->code -= rc->range;
1875 +               return 1;
1876 +       }
1877 +       return 0;
1878 +}
1879 +
1880 +/* Called twice */
1881 +static inline void INIT
1882 +rc_bit_tree_decode(struct rc *rc, uint16_t *p, int num_levels, int *symbol)
1883 +{
1884 +       int i = num_levels;
1885 +
1886 +       *symbol = 1;
1887 +       while (i--)
1888 +               rc_get_bit(rc, p + *symbol, symbol);
1889 +       *symbol -= 1 << num_levels;
1890 +}
1891 +
1892 +
1893 +/*
1894 + * Small lzma deflate implementation.
1895 + * Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
1896 + *
1897 + * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
1898 + * Copyright (C) 1999-2005  Igor Pavlov
1899 + */
1900 +
1901 +
1902 +struct lzma_header {
1903 +       uint8_t pos;
1904 +       uint32_t dict_size;
1905 +       uint64_t dst_size;
1906 +} __attribute__ ((packed)) ;
1907 +
1908 +
1909 +#define LZMA_BASE_SIZE 1846
1910 +#define LZMA_LIT_SIZE 768
1911 +
1912 +#define LZMA_NUM_POS_BITS_MAX 4
1913 +
1914 +#define LZMA_LEN_NUM_LOW_BITS 3
1915 +#define LZMA_LEN_NUM_MID_BITS 3
1916 +#define LZMA_LEN_NUM_HIGH_BITS 8
1917 +
1918 +#define LZMA_LEN_CHOICE 0
1919 +#define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
1920 +#define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
1921 +#define LZMA_LEN_MID (LZMA_LEN_LOW \
1922 +                     + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS)))
1923 +#define LZMA_LEN_HIGH (LZMA_LEN_MID \
1924 +                      +(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS)))
1925 +#define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))
1926 +
1927 +#define LZMA_NUM_STATES 12
1928 +#define LZMA_NUM_LIT_STATES 7
1929 +
1930 +#define LZMA_START_POS_MODEL_INDEX 4
1931 +#define LZMA_END_POS_MODEL_INDEX 14
1932 +#define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))
1933 +
1934 +#define LZMA_NUM_POS_SLOT_BITS 6
1935 +#define LZMA_NUM_LEN_TO_POS_STATES 4
1936 +
1937 +#define LZMA_NUM_ALIGN_BITS 4
1938 +
1939 +#define LZMA_MATCH_MIN_LEN 2
1940 +
1941 +#define LZMA_IS_MATCH 0
1942 +#define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
1943 +#define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
1944 +#define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
1945 +#define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
1946 +#define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
1947 +#define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
1948 +                      + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
1949 +#define LZMA_SPEC_POS (LZMA_POS_SLOT \
1950 +                      +(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS))
1951 +#define LZMA_ALIGN (LZMA_SPEC_POS \
1952 +                   + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX)
1953 +#define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
1954 +#define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
1955 +#define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)
1956 +
1957 +
1958 +struct writer {
1959 +       uint8_t *buffer;
1960 +       uint8_t previous_byte;
1961 +       size_t buffer_pos;
1962 +       int bufsize;
1963 +       size_t global_pos;
1964 +       int(*flush)(void*, unsigned int);
1965 +       struct lzma_header *header;
1966 +};
1967 +
1968 +struct cstate {
1969 +       int state;
1970 +       uint32_t rep0, rep1, rep2, rep3;
1971 +};
1972 +
1973 +static inline size_t INIT get_pos(struct writer *wr)
1974 +{
1975 +       return
1976 +               wr->global_pos + wr->buffer_pos;
1977 +}
1978 +
1979 +static inline uint8_t INIT peek_old_byte(struct writer *wr,
1980 +                                               uint32_t offs)
1981 +{
1982 +       if (!wr->flush) {
1983 +               int32_t pos;
1984 +               while (offs > wr->header->dict_size)
1985 +                       offs -= wr->header->dict_size;
1986 +               pos = wr->buffer_pos - offs;
1987 +               return wr->buffer[pos];
1988 +       } else {
1989 +               uint32_t pos = wr->buffer_pos - offs;
1990 +               while (pos >= wr->header->dict_size)
1991 +                       pos += wr->header->dict_size;
1992 +               return wr->buffer[pos];
1993 +       }
1994 +
1995 +}
1996 +
1997 +static inline void INIT write_byte(struct writer *wr, uint8_t byte)
1998 +{
1999 +       wr->buffer[wr->buffer_pos++] = wr->previous_byte = byte;
2000 +       if (wr->flush && wr->buffer_pos == wr->header->dict_size) {
2001 +               wr->buffer_pos = 0;
2002 +               wr->global_pos += wr->header->dict_size;
2003 +               wr->flush((char *)wr->buffer, wr->header->dict_size);
2004 +       }
2005 +}
2006 +
2007 +
2008 +static inline void INIT copy_byte(struct writer *wr, uint32_t offs)
2009 +{
2010 +       write_byte(wr, peek_old_byte(wr, offs));
2011 +}
2012 +
2013 +static inline void INIT copy_bytes(struct writer *wr,
2014 +                                        uint32_t rep0, int len)
2015 +{
2016 +       do {
2017 +               copy_byte(wr, rep0);
2018 +               len--;
2019 +       } while (len != 0 && wr->buffer_pos < wr->header->dst_size);
2020 +}
2021 +
2022 +static inline void INIT process_bit0(struct writer *wr, struct rc *rc,
2023 +                                    struct cstate *cst, uint16_t *p,
2024 +                                    int pos_state, uint16_t *prob,
2025 +                                    int lc, uint32_t literal_pos_mask) {
2026 +       int mi = 1;
2027 +       rc_update_bit_0(rc, prob);
2028 +       prob = (p + LZMA_LITERAL +
2029 +               (LZMA_LIT_SIZE
2030 +                * (((get_pos(wr) & literal_pos_mask) << lc)
2031 +                   + (wr->previous_byte >> (8 - lc))))
2032 +               );
2033 +
2034 +       if (cst->state >= LZMA_NUM_LIT_STATES) {
2035 +               int match_byte = peek_old_byte(wr, cst->rep0);
2036 +               do {
2037 +                       int bit;
2038 +                       uint16_t *prob_lit;
2039 +
2040 +                       match_byte <<= 1;
2041 +                       bit = match_byte & 0x100;
2042 +                       prob_lit = prob + 0x100 + bit + mi;
2043 +                       if (rc_get_bit(rc, prob_lit, &mi)) {
2044 +                               if (!bit)
2045 +                                       break;
2046 +                       } else {
2047 +                               if (bit)
2048 +                                       break;
2049 +                       }
2050 +               } while (mi < 0x100);
2051 +       }
2052 +       while (mi < 0x100) {
2053 +               uint16_t *prob_lit = prob + mi;
2054 +               rc_get_bit(rc, prob_lit, &mi);
2055 +       }
2056 +       write_byte(wr, mi);
2057 +       if (cst->state < 4)
2058 +               cst->state = 0;
2059 +       else if (cst->state < 10)
2060 +               cst->state -= 3;
2061 +       else
2062 +               cst->state -= 6;
2063 +}
2064 +
2065 +static inline void INIT process_bit1(struct writer *wr, struct rc *rc,
2066 +                                           struct cstate *cst, uint16_t *p,
2067 +                                           int pos_state, uint16_t *prob) {
2068 +  int offset;
2069 +       uint16_t *prob_len;
2070 +       int num_bits;
2071 +       int len;
2072 +
2073 +       rc_update_bit_1(rc, prob);
2074 +       prob = p + LZMA_IS_REP + cst->state;
2075 +       if (rc_is_bit_0(rc, prob)) {
2076 +               rc_update_bit_0(rc, prob);
2077 +               cst->rep3 = cst->rep2;
2078 +               cst->rep2 = cst->rep1;
2079 +               cst->rep1 = cst->rep0;
2080 +               cst->state = cst->state < LZMA_NUM_LIT_STATES ? 0 : 3;
2081 +               prob = p + LZMA_LEN_CODER;
2082 +       } else {
2083 +               rc_update_bit_1(rc, prob);
2084 +               prob = p + LZMA_IS_REP_G0 + cst->state;
2085 +               if (rc_is_bit_0(rc, prob)) {
2086 +                       rc_update_bit_0(rc, prob);
2087 +                       prob = (p + LZMA_IS_REP_0_LONG
2088 +                               + (cst->state <<
2089 +                                  LZMA_NUM_POS_BITS_MAX) +
2090 +                               pos_state);
2091 +                       if (rc_is_bit_0(rc, prob)) {
2092 +                               rc_update_bit_0(rc, prob);
2093 +
2094 +                               cst->state = cst->state < LZMA_NUM_LIT_STATES ?
2095 +                                       9 : 11;
2096 +                               copy_byte(wr, cst->rep0);
2097 +                               return;
2098 +                       } else {
2099 +                               rc_update_bit_1(rc, prob);
2100 +                       }
2101 +               } else {
2102 +                       uint32_t distance;
2103 +
2104 +                       rc_update_bit_1(rc, prob);
2105 +                       prob = p + LZMA_IS_REP_G1 + cst->state;
2106 +                       if (rc_is_bit_0(rc, prob)) {
2107 +                               rc_update_bit_0(rc, prob);
2108 +                               distance = cst->rep1;
2109 +                       } else {
2110 +                               rc_update_bit_1(rc, prob);
2111 +                               prob = p + LZMA_IS_REP_G2 + cst->state;
2112 +                               if (rc_is_bit_0(rc, prob)) {
2113 +                                       rc_update_bit_0(rc, prob);
2114 +                                       distance = cst->rep2;
2115 +                               } else {
2116 +                                       rc_update_bit_1(rc, prob);
2117 +                                       distance = cst->rep3;
2118 +                                       cst->rep3 = cst->rep2;
2119 +                               }
2120 +                               cst->rep2 = cst->rep1;
2121 +                       }
2122 +                       cst->rep1 = cst->rep0;
2123 +                       cst->rep0 = distance;
2124 +               }
2125 +               cst->state = cst->state < LZMA_NUM_LIT_STATES ? 8 : 11;
2126 +               prob = p + LZMA_REP_LEN_CODER;
2127 +       }
2128 +
2129 +       prob_len = prob + LZMA_LEN_CHOICE;
2130 +       if (rc_is_bit_0(rc, prob_len)) {
2131 +               rc_update_bit_0(rc, prob_len);
2132 +               prob_len = (prob + LZMA_LEN_LOW
2133 +                           + (pos_state <<
2134 +                              LZMA_LEN_NUM_LOW_BITS));
2135 +               offset = 0;
2136 +               num_bits = LZMA_LEN_NUM_LOW_BITS;
2137 +       } else {
2138 +               rc_update_bit_1(rc, prob_len);
2139 +               prob_len = prob + LZMA_LEN_CHOICE_2;
2140 +               if (rc_is_bit_0(rc, prob_len)) {
2141 +                       rc_update_bit_0(rc, prob_len);
2142 +                       prob_len = (prob + LZMA_LEN_MID
2143 +                                   + (pos_state <<
2144 +                                      LZMA_LEN_NUM_MID_BITS));
2145 +                       offset = 1 << LZMA_LEN_NUM_LOW_BITS;
2146 +                       num_bits = LZMA_LEN_NUM_MID_BITS;
2147 +               } else {
2148 +                       rc_update_bit_1(rc, prob_len);
2149 +                       prob_len = prob + LZMA_LEN_HIGH;
2150 +                       offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
2151 +                                 + (1 << LZMA_LEN_NUM_MID_BITS));
2152 +                       num_bits = LZMA_LEN_NUM_HIGH_BITS;
2153 +               }
2154 +       }
2155 +
2156 +       rc_bit_tree_decode(rc, prob_len, num_bits, &len);
2157 +       len += offset;
2158 +
2159 +       if (cst->state < 4) {
2160 +               int pos_slot;
2161 +
2162 +               cst->state += LZMA_NUM_LIT_STATES;
2163 +               prob =
2164 +                       p + LZMA_POS_SLOT +
2165 +                       ((len <
2166 +                         LZMA_NUM_LEN_TO_POS_STATES ? len :
2167 +                         LZMA_NUM_LEN_TO_POS_STATES - 1)
2168 +                        << LZMA_NUM_POS_SLOT_BITS);
2169 +               rc_bit_tree_decode(rc, prob,
2170 +                                  LZMA_NUM_POS_SLOT_BITS,
2171 +                                  &pos_slot);
2172 +               if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
2173 +                       int i, mi;
2174 +                       num_bits = (pos_slot >> 1) - 1;
2175 +                       cst->rep0 = 2 | (pos_slot & 1);
2176 +                       if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
2177 +                               cst->rep0 <<= num_bits;
2178 +                               prob = p + LZMA_SPEC_POS +
2179 +                                       cst->rep0 - pos_slot - 1;
2180 +                       } else {
2181 +                               num_bits -= LZMA_NUM_ALIGN_BITS;
2182 +                               while (num_bits--)
2183 +                                       cst->rep0 = (cst->rep0 << 1) |
2184 +                                               rc_direct_bit(rc);
2185 +                               prob = p + LZMA_ALIGN;
2186 +                               cst->rep0 <<= LZMA_NUM_ALIGN_BITS;
2187 +                               num_bits = LZMA_NUM_ALIGN_BITS;
2188 +                       }
2189 +                       i = 1;
2190 +                       mi = 1;
2191 +                       while (num_bits--) {
2192 +                               if (rc_get_bit(rc, prob + mi, &mi))
2193 +                                       cst->rep0 |= i;
2194 +                               i <<= 1;
2195 +                       }
2196 +               } else
2197 +                       cst->rep0 = pos_slot;
2198 +               if (++(cst->rep0) == 0)
2199 +                       return;
2200 +       }
2201 +
2202 +       len += LZMA_MATCH_MIN_LEN;
2203 +
2204 +       copy_bytes(wr, cst->rep0, len);
2205 +}
2206 +
2207 +
2208 +
2209 +STATIC inline int INIT unlzma(unsigned char *buf, int in_len,
2210 +                             int(*fill)(void*, unsigned int),
2211 +                             int(*flush)(void*, unsigned int),
2212 +                             unsigned char *output,
2213 +                             int *posp,
2214 +                             void(*error_fn)(char *x)
2215 +       )
2216 +{
2217 +       struct lzma_header header;
2218 +       int lc, pb, lp;
2219 +       uint32_t pos_state_mask;
2220 +       uint32_t literal_pos_mask;
2221 +       uint16_t *p;
2222 +       int num_probs;
2223 +       struct rc rc;
2224 +       int i, mi;
2225 +       struct writer wr;
2226 +       struct cstate cst;
2227 +       unsigned char *inbuf;
2228 +       int ret = -1;
2229 +
2230 +       set_error_fn(error_fn);
2231 +       if (!flush)
2232 +               in_len -= 4; /* Uncompressed size hack active in pre-boot
2233 +                               environment */
2234 +       if (buf)
2235 +               inbuf = buf;
2236 +       else
2237 +               inbuf = malloc(LZMA_IOBUF_SIZE);
2238 +       if (!inbuf) {
2239 +               error("Could not allocate input bufer");
2240 +               goto exit_0;
2241 +       }
2242 +
2243 +       cst.state = 0;
2244 +       cst.rep0 = cst.rep1 = cst.rep2 = cst.rep3 = 1;
2245 +
2246 +       wr.header = &header;
2247 +       wr.flush = flush;
2248 +       wr.global_pos = 0;
2249 +       wr.previous_byte = 0;
2250 +       wr.buffer_pos = 0;
2251 +
2252 +       rc_init(&rc, fill, inbuf, in_len);
2253 +
2254 +       for (i = 0; i < sizeof(header); i++) {
2255 +               if (rc.ptr >= rc.buffer_end)
2256 +                       rc_read(&rc);
2257 +               ((unsigned char *)&header)[i] = *rc.ptr++;
2258 +       }
2259 +
2260 +       if (header.pos >= (9 * 5 * 5))
2261 +               error("bad header");
2262 +
2263 +       mi = 0;
2264 +       lc = header.pos;
2265 +       while (lc >= 9) {
2266 +               mi++;
2267 +               lc -= 9;
2268 +       }
2269 +       pb = 0;
2270 +       lp = mi;
2271 +       while (lp >= 5) {
2272 +               pb++;
2273 +               lp -= 5;
2274 +       }
2275 +       pos_state_mask = (1 << pb) - 1;
2276 +       literal_pos_mask = (1 << lp) - 1;
2277 +
2278 +       ENDIAN_CONVERT(header.dict_size);
2279 +       ENDIAN_CONVERT(header.dst_size);
2280 +
2281 +       if (header.dict_size == 0)
2282 +               header.dict_size = 1;
2283 +
2284 +       if (output)
2285 +               wr.buffer = output;
2286 +       else {
2287 +               wr.bufsize = MIN(header.dst_size, header.dict_size);
2288 +               wr.buffer = large_malloc(wr.bufsize);
2289 +       }
2290 +       if (wr.buffer == NULL)
2291 +               goto exit_1;
2292 +
2293 +       num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
2294 +       p = (uint16_t *) large_malloc(num_probs * sizeof(*p));
2295 +       if (p == 0)
2296 +               goto exit_2;
2297 +       num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
2298 +       for (i = 0; i < num_probs; i++)
2299 +               p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
2300 +
2301 +       rc_init_code(&rc);
2302 +
2303 +       while (get_pos(&wr) < header.dst_size) {
2304 +               int pos_state = get_pos(&wr) & pos_state_mask;
2305 +               uint16_t *prob = p + LZMA_IS_MATCH +
2306 +                       (cst.state << LZMA_NUM_POS_BITS_MAX) + pos_state;
2307 +               if (rc_is_bit_0(&rc, prob))
2308 +                       process_bit0(&wr, &rc, &cst, p, pos_state, prob,
2309 +                                    lc, literal_pos_mask);
2310 +               else {
2311 +                       process_bit1(&wr, &rc, &cst, p, pos_state, prob);
2312 +                       if (cst.rep0 == 0)
2313 +                               break;
2314 +               }
2315 +       }
2316 +
2317 +       if (posp)
2318 +               *posp = rc.ptr-rc.buffer;
2319 +       if (wr.flush)
2320 +               wr.flush(wr.buffer, wr.buffer_pos);
2321 +       ret = 0;
2322 +       large_free(p);
2323 +exit_2:
2324 +       if (!output)
2325 +               large_free(wr.buffer);
2326 +exit_1:
2327 +       if (!buf)
2328 +               free(inbuf);
2329 +exit_0:
2330 +       return ret;
2331 +}
2332 +
2333 +#define decompress unlzma
2334 diff -urNp linux-2.6.27.orig/lib/inflate.c linux-2.6.27/lib/inflate.c
2335 --- linux-2.6.27.orig/lib/inflate.c     2008-10-29 08:47:55.000000000 +0100
2336 +++ linux-2.6.27/lib/inflate.c  2008-10-30 22:27:54.000000000 +0100
2337 @@ -109,20 +109,76 @@ static char rcsid[] = "#Id: inflate.c,v 
2338  #endif
2339  
2340  #ifndef STATIC
2341 +#include <linux/decompress/inflate.h>
2342 +#endif /* ! STATIC */
2343  
2344 -#if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H)
2345 -#  include <sys/types.h>
2346 -#  include <stdlib.h>
2347 -#endif
2348 +#include <linux/decompress/mm.h>
2349 +
2350 +#include <linux/string.h>
2351  
2352 -#include "gzip.h"
2353 -#define STATIC
2354 -#endif /* !STATIC */
2355 +static int(*flush_cb)(void*, unsigned int);
2356 +static int(*fill_cb)(void*, unsigned int);
2357  
2358 -#ifndef INIT
2359 -#define INIT
2360 +/* Begin stuff copied from initramfs */
2361 +/*
2362 + * gzip declarations
2363 + */
2364 +
2365 +#define OF(args)  args
2366 +
2367 +#ifndef memzero
2368 +#define memzero(s, n)     memset((s), 0, (n))
2369  #endif
2370 -       
2371 +
2372 +#define INBUFSIZ 4096
2373 +
2374 +#define WSIZE 0x8000    /* window size--must be a power of two, and */
2375 +                       /*  at least 32K for zip's deflate method */
2376 +
2377 +static uint8_t *inbuf;
2378 +static uint8_t *window;
2379 +
2380 +static unsigned insize;  /* valid bytes in inbuf */
2381 +static unsigned outcnt;  /* bytes in output buffer */
2382 +static long bytes_out;
2383 +
2384 +/* --- */
2385 +
2386 +static unsigned inptr;   /* index of next byte to be processed in inbuf */
2387 +
2388 +/* --- */
2389 +
2390 +/* ===========================================================================
2391 + * Fill the input buffer. This is called only when the buffer is empty
2392 + * and at least one byte is really needed.
2393 + * Returning -1 does not guarantee that gunzip() will ever return.
2394 + */
2395 +static int INIT fill_inbuf(void)
2396 +{
2397 +       insize = fill_cb(inbuf, INBUFSIZ);
2398 +       if (insize <= 0) {
2399 +               error("RAMDISK: ran out of compressed data");
2400 +               return -1;
2401 +       }
2402 +
2403 +       inptr = 1;
2404 +
2405 +       return inbuf[0];
2406 +}
2407 +
2408 +#define get_byte()  (inptr < insize ? inbuf[inptr++] : fill_inbuf())
2409 +
2410 +/* Diagnostic functions (stubbed out) */
2411 +#define Assert(cond, msg)
2412 +#define Trace(x)
2413 +#define Tracev(x)
2414 +#define Tracevv(x)
2415 +#define Tracec(c, x)
2416 +#define Tracecv(c, x)
2417 +
2418 +static void flush_window(void);
2419 +/* End stuff copied from initramfs */
2420 +
2421  #define slide window
2422  
2423  /* Huffman code lookup table entry--this entry is four bytes for machines
2424 @@ -133,10 +189,10 @@ static char rcsid[] = "#Id: inflate.c,v 
2425     an unused code.  If a code with e == 99 is looked up, this implies an
2426     error in the data. */
2427  struct huft {
2428 -  uch e;                /* number of extra bits or operation */
2429 -  uch b;                /* number of bits in this code or subcode */
2430 +  uint8_t e;                /* number of extra bits or operation */
2431 +  uint8_t b;                /* number of bits in this code or subcode */
2432    union {
2433 -    ush n;              /* literal, length base, or distance base */
2434 +    uint16_t n;              /* literal, length base, or distance base */
2435      struct huft *t;     /* pointer to next level of table */
2436    } v;
2437  };
2438 @@ -144,7 +200,7 @@ struct huft {
2439  
2440  /* Function prototypes */
2441  STATIC int INIT huft_build OF((unsigned *, unsigned, unsigned, 
2442 -               const ush *, const ush *, struct huft **, int *));
2443 +               const uint16_t *, const uint16_t *, struct huft **, int *));
2444  STATIC int INIT huft_free OF((struct huft *));
2445  STATIC int INIT inflate_codes OF((struct huft *, struct huft *, int, int));
2446  STATIC int INIT inflate_stored OF((void));
2447 @@ -159,28 +215,28 @@ STATIC int INIT inflate OF((void));
2448     circular buffer.  The index is updated simply by incrementing and then
2449     ANDing with 0x7fff (32K-1). */
2450  /* It is left to other modules to supply the 32 K area.  It is assumed
2451 -   to be usable as if it were declared "uch slide[32768];" or as just
2452 -   "uch *slide;" and then malloc'ed in the latter case.  The definition
2453 +   to be usable as if it were declared "uint8_t slide[32768];" or as just
2454 +   "uint8_t *slide;" and then malloc'ed in the latter case.  The definition
2455     must be in unzip.h, included above. */
2456  /* unsigned wp;             current position in slide */
2457  #define wp outcnt
2458  #define flush_output(w) (wp=(w),flush_window())
2459  
2460  /* Tables for deflate from PKZIP's appnote.txt. */
2461 -static const unsigned border[] = {    /* Order of the bit length code lengths */
2462 +static const unsigned border[] = {   /* Order of the bit length code lengths */
2463          16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
2464 -static const ush cplens[] = {         /* Copy lengths for literal codes 257..285 */
2465 +static const uint16_t cplens[] = { /* Copy lengths for literal codes 257..285 */
2466          3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
2467          35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
2468          /* note: see note #13 above about the 258 in this list. */
2469 -static const ush cplext[] = {         /* Extra bits for literal codes 257..285 */
2470 +static const uint16_t cplext[] = {   /* Extra bits for literal codes 257..285 */
2471          0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
2472          3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
2473 -static const ush cpdist[] = {         /* Copy offsets for distance codes 0..29 */
2474 +static const uint16_t cpdist[] = {   /* Copy offsets for distance codes 0..29 */
2475          1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
2476          257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
2477          8193, 12289, 16385, 24577};
2478 -static const ush cpdext[] = {         /* Extra bits for distance codes */
2479 +static const uint16_t cpdext[] = {   /* Extra bits for distance codes */
2480          0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
2481          7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
2482          12, 12, 13, 13};
2483 @@ -217,59 +273,21 @@ static const ush cpdext[] = {         /*
2484     the stream.
2485   */
2486  
2487 -STATIC ulg bb;                         /* bit buffer */
2488 +STATIC uint32_t bb;                         /* bit buffer */
2489  STATIC unsigned bk;                    /* bits in bit buffer */
2490  
2491 -STATIC const ush mask_bits[] = {
2492 +STATIC const uint16_t mask_bits[] = {
2493      0x0000,
2494      0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
2495      0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
2496  };
2497  
2498 -#define NEXTBYTE()  ({ int v = get_byte(); if (v < 0) goto underrun; (uch)v; })
2499 -#define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
2500 +#define NEXTBYTE()  ({ int v = get_byte(); if (v < 0) goto underrun; \
2501 +                       (uint8_t)v; })
2502 +#define NEEDBITS(n) {while (k < (n)) \
2503 +                       {b |= ((uint32_t)NEXTBYTE())<<k; k += 8; } }
2504  #define DUMPBITS(n) {b>>=(n);k-=(n);}
2505  
2506 -#ifndef NO_INFLATE_MALLOC
2507 -/* A trivial malloc implementation, adapted from
2508 - *  malloc by Hannu Savolainen 1993 and Matthias Urlichs 1994
2509 - */
2510 -
2511 -static unsigned long malloc_ptr;
2512 -static int malloc_count;
2513 -
2514 -static void *malloc(int size)
2515 -{
2516 -       void *p;
2517 -
2518 -       if (size < 0)
2519 -               error("Malloc error");
2520 -       if (!malloc_ptr)
2521 -               malloc_ptr = free_mem_ptr;
2522 -
2523 -       malloc_ptr = (malloc_ptr + 3) & ~3;     /* Align */
2524 -
2525 -       p = (void *)malloc_ptr;
2526 -       malloc_ptr += size;
2527 -
2528 -       if (free_mem_end_ptr && malloc_ptr >= free_mem_end_ptr)
2529 -               error("Out of memory");
2530 -
2531 -       malloc_count++;
2532 -       return p;
2533 -}
2534 -
2535 -static void free(void *where)
2536 -{
2537 -       malloc_count--;
2538 -       if (!malloc_count)
2539 -               malloc_ptr = free_mem_ptr;
2540 -}
2541 -#else
2542 -#define malloc(a) kmalloc(a, GFP_KERNEL)
2543 -#define free(a) kfree(a)
2544 -#endif
2545 -
2546  /*
2547     Huffman code decoding is performed using a multi-level table lookup.
2548     The fastest way to decode is to simply build a lookup table whose
2549 @@ -307,7 +325,7 @@ STATIC const int lbits = 9;          /* 
2550  STATIC const int dbits = 6;          /* bits in base distance lookup table */
2551  
2552  
2553 -/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
2554 +/* If BMAX needs to be larger than 16, then h and x[] should be uint32_t. */
2555  #define BMAX 16         /* maximum bit length of any code (16 for explode) */
2556  #define N_MAX 288       /* maximum number of codes in any set */
2557  
2558 @@ -319,8 +337,8 @@ STATIC int INIT huft_build(
2559         unsigned *b,            /* code lengths in bits (all assumed <= BMAX) */
2560         unsigned n,             /* number of codes (assumed <= N_MAX) */
2561         unsigned s,             /* number of simple-valued codes (0..s-1) */
2562 -       const ush *d,           /* list of base values for non-simple codes */
2563 -       const ush *e,           /* list of extra bits for non-simple codes */
2564 +       const uint16_t *d,      /* list of base values for non-simple codes */
2565 +       const uint16_t *e,      /* list of extra bits for non-simple codes */
2566         struct huft **t,        /* result: starting table */
2567         int *m                  /* maximum lookup bits, returns actual */
2568         )
2569 @@ -500,8 +518,8 @@ DEBG1("5 ");
2570          if (h)
2571          {
2572            x[h] = i;             /* save pattern for backing up */
2573 -          r.b = (uch)l;         /* bits to dump before this table */
2574 -          r.e = (uch)(16 + j);  /* bits in this table */
2575 +         r.b = (uint8_t)l;         /* bits to dump before this table */
2576 +         r.e = (uint8_t)(16 + j);  /* bits in this table */
2577            r.v.t = q;            /* pointer to this table */
2578            j = i >> (w - l);     /* (get around Turbo C bug) */
2579            u[h-1][j] = r;        /* connect to last table */
2580 @@ -511,18 +529,18 @@ DEBG1("6 ");
2581  DEBG("h6c ");
2582  
2583        /* set up table entry in r */
2584 -      r.b = (uch)(k - w);
2585 +      r.b = (uint8_t)(k - w);
2586        if (p >= v + n)
2587          r.e = 99;               /* out of values--invalid code */
2588        else if (*p < s)
2589        {
2590 -        r.e = (uch)(*p < 256 ? 16 : 15);    /* 256 is end-of-block code */
2591 -        r.v.n = (ush)(*p);             /* simple code is just the value */
2592 +       r.e = (uint8_t)(*p < 256 ? 16 : 15);    /* 256 is end-of-block code */
2593 +       r.v.n = (uint16_t)(*p);             /* simple code is just the value */
2594         p++;                           /* one compiler does not like *p++ */
2595        }
2596        else
2597        {
2598 -        r.e = (uch)e[*p - s];   /* non-simple--look up in lists */
2599 +       r.e = (uint8_t)e[*p - s];   /* non-simple--look up in lists */
2600          r.v.n = d[*p++ - s];
2601        }
2602  DEBG("h6d ");
2603 @@ -592,11 +610,12 @@ STATIC int INIT inflate_codes(
2604     Return an error code or zero if it all goes ok. */
2605  {
2606    register unsigned e;  /* table entry flag/number of extra bits */
2607 -  unsigned n, d;        /* length and index for copy */
2608 +  unsigned n;
2609 +  int d;              /* source index for copy */
2610    unsigned w;           /* current window position */
2611    struct huft *t;       /* pointer to table entry */
2612    unsigned ml, md;      /* masks for bl and bd bits */
2613 -  register ulg b;       /* bit buffer */
2614 +  register uint32_t b;       /* bit buffer */
2615    register unsigned k;  /* number of bits in bit buffer */
2616  
2617  
2618 @@ -622,7 +641,7 @@ STATIC int INIT inflate_codes(
2619      DUMPBITS(t->b)
2620      if (e == 16)                /* then it's a literal */
2621      {
2622 -      slide[w++] = (uch)t->v.n;
2623 +      slide[w++] = (uint8_t)t->v.n;
2624        Tracevv((stderr, "%c", slide[w-1]));
2625        if (w == WSIZE)
2626        {
2627 @@ -659,11 +678,22 @@ STATIC int INIT inflate_codes(
2628  
2629        /* do the copy */
2630        do {
2631 -        n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
2632 +       if (flush_cb) {
2633 +               /* Sliding window emulated using circular buffer:
2634 +                * manage wrap-around */
2635 +               e = WSIZE - ((d &= WSIZE-1) > w ? d : w);
2636 +               if (e > n)
2637 +                       e = n;
2638 +       } else {
2639 +               e = n;
2640 +       }
2641 +
2642 +       n -= e;
2643 +
2644  #if !defined(NOMEMCPY) && !defined(DEBUG)
2645          if (w - d >= e)         /* (this test assumes unsigned comparison) */
2646          {
2647 -          memcpy(slide + w, slide + d, e);
2648 +               memcpy(slide + w, slide + d, e);
2649            w += e;
2650            d += e;
2651          }
2652 @@ -673,9 +703,8 @@ STATIC int INIT inflate_codes(
2653              slide[w++] = slide[d++];
2654             Tracevv((stderr, "%c", slide[w-1]));
2655            } while (--e);
2656 -        if (w == WSIZE)
2657 -        {
2658 -          flush_output(w);
2659 +       if (w == WSIZE) {
2660 +         flush_output(w);
2661            w = 0;
2662          }
2663        } while (n);
2664 @@ -702,7 +731,7 @@ STATIC int INIT inflate_stored(void)
2665  {
2666    unsigned n;           /* number of bytes in block */
2667    unsigned w;           /* current window position */
2668 -  register ulg b;       /* bit buffer */
2669 +  register uint32_t b;       /* bit buffer */
2670    register unsigned k;  /* number of bits in bit buffer */
2671  
2672  DEBG("<stor");
2673 @@ -732,7 +761,7 @@ DEBG("<stor");
2674    while (n--)
2675    {
2676      NEEDBITS(8)
2677 -    slide[w++] = (uch)b;
2678 +    slide[w++] = (uint8_t)b;
2679      if (w == WSIZE)
2680      {
2681        flush_output(w);
2682 @@ -838,7 +867,7 @@ STATIC int noinline INIT inflate_dynamic
2683    unsigned nl;          /* number of literal/length codes */
2684    unsigned nd;          /* number of distance codes */
2685    unsigned *ll;         /* literal/length and distance code lengths */
2686 -  register ulg b;       /* bit buffer */
2687 +  register uint32_t b;       /* bit buffer */
2688    register unsigned k;  /* number of bits in bit buffer */
2689    int ret;
2690  
2691 @@ -1033,7 +1062,7 @@ STATIC int INIT inflate_block(
2692  /* decompress an inflated block */
2693  {
2694    unsigned t;           /* block type */
2695 -  register ulg b;       /* bit buffer */
2696 +  register uint32_t b;       /* bit buffer */
2697    register unsigned k;  /* number of bits in bit buffer */
2698  
2699    DEBG("<blk");
2700 @@ -1130,8 +1159,8 @@ STATIC int INIT inflate(void)
2701   *
2702   **********************************************************************/
2703  
2704 -static ulg crc_32_tab[256];
2705 -static ulg crc;                /* initialized in makecrc() so it'll reside in bss */
2706 +static uint32_t crc_32_tab[256];
2707 +static uint32_t crc;   /* initialized in makecrc() so it'll reside in bss */
2708  #define CRC_VALUE (crc ^ 0xffffffffUL)
2709  
2710  /*
2711 @@ -1172,7 +1201,7 @@ makecrc(void)
2712    }
2713  
2714    /* this is initialized here so this code could reside in ROM */
2715 -  crc = (ulg)0xffffffffUL; /* shift register contents */
2716 +  crc = (uint32_t)0xffffffffUL; /* shift register contents */
2717  }
2718  
2719  /* gzip flag byte */
2720 @@ -1184,18 +1213,80 @@ makecrc(void)
2721  #define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */
2722  #define RESERVED     0xC0 /* bit 6,7:   reserved */
2723  
2724 +/* ===========================================================================
2725 + * Write the output window window[0..outcnt-1] and update crc and bytes_out.
2726 + * (Used for the decompressed data only.)
2727 + */
2728 +static void INIT flush_window(void)
2729 +{
2730 +       uint32_t c = crc;         /* temporary variable */
2731 +       unsigned n;
2732 +       uint8_t *in, ch;
2733 +
2734 +       in = window;
2735 +       for (n = 0; n < outcnt; n++) {
2736 +               ch = *in++;
2737 +               c = crc_32_tab[((int)c ^ ch) & 0xff] ^ (c >> 8);
2738 +       }
2739 +       crc = c;
2740 +       bytes_out += (uint32_t)outcnt;
2741 +       if (flush_cb != NULL)
2742 +               flush_cb(window, outcnt); /* TODO: handle unzip_error */
2743 +       else
2744 +               window += outcnt;
2745 +       outcnt = 0;
2746 +}
2747 +
2748 +static int empty_fill(void *buf, unsigned int len)
2749 +{
2750 +       return 0;
2751 +}
2752 +
2753 +
2754 +
2755  /*
2756   * Do the uncompression!
2757   */
2758 -static int INIT gunzip(void)
2759 +STATIC int INIT gunzip(unsigned char *buf, int len,
2760 +                      int(*fill)(void*, unsigned int),
2761 +                      int(*flush)(void*, unsigned int),
2762 +                      unsigned char *output,
2763 +                      int *posp,
2764 +                      void(*error_fn)(char *x)
2765 +  )
2766  {
2767 -    uch flags;
2768 +    uint8_t flags;
2769      unsigned char magic[2]; /* magic header */
2770      char method;
2771 -    ulg orig_crc = 0;       /* original crc */
2772 -    ulg orig_len = 0;       /* original uncompressed length */
2773 +    uint32_t orig_crc = 0;       /* original crc */
2774 +    uint32_t orig_len = 0;       /* original uncompressed length */
2775      int res;
2776  
2777 +    set_error_fn(error_fn);
2778 +    if (fill == NULL)
2779 +           fill_cb = empty_fill;
2780 +    else
2781 +           fill_cb = fill;
2782 +    if (output)
2783 +           window = output;
2784 +    else {
2785 +           window = malloc(0x8000);
2786 +           if (!window)
2787 +                   panic("can't allocate buffers");
2788 +           flush_cb = flush;
2789 +    }
2790 +
2791 +    insize = len;
2792 +    if (buf)
2793 +           inbuf = buf;
2794 +    else
2795 +           inbuf = malloc(INBUFSIZ);
2796 +    inptr = 0;
2797 +    outcnt = 0;                /* bytes in output buffer */
2798 +    bytes_out = 0;
2799 +    crc = (uint32_t)0xffffffffL; /* shift register contents */
2800 +    makecrc();
2801 +
2802      magic[0] = NEXTBYTE();
2803      magic[1] = NEXTBYTE();
2804      method   = NEXTBYTE();
2805 @@ -1212,7 +1303,7 @@ static int INIT gunzip(void)
2806             return -1;
2807      }
2808  
2809 -    flags  = (uch)get_byte();
2810 +    flags  = (uint8_t)get_byte();
2811      if ((flags & ENCRYPTED) != 0) {
2812             error("Input is encrypted");
2813             return -1;
2814 @@ -1277,15 +1368,15 @@ static int INIT gunzip(void)
2815      /* crc32  (see algorithm.doc)
2816       * uncompressed input size modulo 2^32
2817       */
2818 -    orig_crc = (ulg) NEXTBYTE();
2819 -    orig_crc |= (ulg) NEXTBYTE() << 8;
2820 -    orig_crc |= (ulg) NEXTBYTE() << 16;
2821 -    orig_crc |= (ulg) NEXTBYTE() << 24;
2822 +    orig_crc = (uint32_t) NEXTBYTE();
2823 +    orig_crc |= (uint32_t) NEXTBYTE() << 8;
2824 +    orig_crc |= (uint32_t) NEXTBYTE() << 16;
2825 +    orig_crc |= (uint32_t) NEXTBYTE() << 24;
2826      
2827 -    orig_len = (ulg) NEXTBYTE();
2828 -    orig_len |= (ulg) NEXTBYTE() << 8;
2829 -    orig_len |= (ulg) NEXTBYTE() << 16;
2830 -    orig_len |= (ulg) NEXTBYTE() << 24;
2831 +    orig_len = (uint32_t) NEXTBYTE();
2832 +    orig_len |= (uint32_t) NEXTBYTE() << 8;
2833 +    orig_len |= (uint32_t) NEXTBYTE() << 16;
2834 +    orig_len |= (uint32_t) NEXTBYTE() << 24;
2835      
2836      /* Validate decompression */
2837      if (orig_crc != CRC_VALUE) {
2838 @@ -1296,11 +1387,18 @@ static int INIT gunzip(void)
2839             error("length error");
2840             return -1;
2841      }
2842 +    if (!output)
2843 +           free(window);
2844 +    if (posp)
2845 +           *posp = inptr;
2846      return 0;
2847  
2848   underrun:                     /* NEXTBYTE() goto's here if needed */
2849 +    free(window);
2850 +    if (!buf)
2851 +           free(inbuf);
2852      error("out of input data");
2853      return -1;
2854  }
2855  
2856 -
2857 +#define decompress gunzip
2858 diff -urNp linux-2.6.27.orig/lib/Makefile linux-2.6.27/lib/Makefile
2859 --- linux-2.6.27.orig/lib/Makefile      2008-10-29 08:47:55.000000000 +0100
2860 +++ linux-2.6.27/lib/Makefile   2008-10-30 22:27:34.000000000 +0100
2861 @@ -57,6 +57,10 @@ obj-$(CONFIG_CRC7)   += crc7.o
2862  obj-$(CONFIG_LIBCRC32C)        += libcrc32c.o
2863  obj-$(CONFIG_GENERIC_ALLOCATOR) += genalloc.o
2864  
2865 +obj-y                  += inflate.o
2866 +obj-$(CONFIG_RD_BZIP2) += decompress_bunzip2.o
2867 +obj-$(CONFIG_RD_LZMA)  += decompress_unlzma.o
2868 +
2869  obj-$(CONFIG_ZLIB_INFLATE) += zlib_inflate/
2870  obj-$(CONFIG_ZLIB_DEFLATE) += zlib_deflate/
2871  obj-$(CONFIG_REED_SOLOMON) += reed_solomon/
2872 diff -urNp linux-2.6.27.orig/scripts/bin_size linux-2.6.27/scripts/bin_size
2873 --- linux-2.6.27.orig/scripts/bin_size  1970-01-01 01:00:00.000000000 +0100
2874 +++ linux-2.6.27/scripts/bin_size       2008-10-30 22:27:29.000000000 +0100
2875 @@ -0,0 +1,10 @@
2876 +#!/bin/sh
2877 +
2878 +if [ $# = 0 ] ; then
2879 +   echo Usage: $0 file
2880 +fi
2881 +
2882 +size_dec=`stat -c "%s" $1`
2883 +size_hex_echo_string=`printf "%08x" $size_dec |
2884 +     sed 's/\(..\)\(..\)\(..\)\(..\)/\\\\x\4\\\\x\3\\\\x\2\\\\x\1/g'`
2885 +/bin/echo -ne $size_hex_echo_string
2886 diff -urNp linux-2.6.27.orig/scripts/Makefile.lib linux-2.6.27/scripts/Makefile.lib
2887 --- linux-2.6.27.orig/scripts/Makefile.lib      2008-10-29 08:48:11.000000000 +0100
2888 +++ linux-2.6.27/scripts/Makefile.lib   2008-10-30 22:27:29.000000000 +0100
2889 @@ -174,3 +174,17 @@ quiet_cmd_gzip = GZIP    $@
2890  cmd_gzip = gzip -f -9 < $< > $@
2891  
2892  
2893 +# Bzip2
2894 +# ---------------------------------------------------------------------------
2895 +
2896 +# Bzip2 does not include size in file... so we have to fake that
2897 +size_append=$(CONFIG_SHELL) $(srctree)/scripts/bin_size
2898 +
2899 +quiet_cmd_bzip2 = BZIP2    $@
2900 +cmd_bzip2 = (bzip2 -9 < $< ; $(size_append) $<) > $@ || (rm -f $@ ; false)
2901 +
2902 +# Lzma
2903 +# ---------------------------------------------------------------------------
2904 +
2905 +quiet_cmd_lzma = LZMA    $@
2906 +cmd_lzma = (lzma -9 --format=alone -c $< ; $(size_append) $<) >$@ || (rm -f $@ ; false)
This page took 0.639696 seconds and 3 git commands to generate.